
Mobile Forensics Data Integrity Assessment by

Event Monitoring

Alessandro Distefano, Antonio Grillo, Alessandro Lentini, Gianluigi Me, Davide Tulimiero
Computer Science, Systems and Production Department

University of Rome Tor Vergata, Via del Politecnico 1

00133, Rome, Italy

{distefano,grillo,lentini,me,tulimiero}@disp.uniroma2.it

Abstract—Mobile phones, due to the wide range of services

they offer, increasingly represent a major tool, with crucial

importance, in people daily life. Therefore, they could act as
fundamental witnesses, or simply as sources to angle for,

supporting investigations of a wide range of crimes, not limited to
digital crime. Currently, the most forensic acquisition and
analysis of these devices is based on tools implementing a remote

paradigm, dealing with a forensic workstation used for seizure,
via insertion of a piece of code in the mobile device; therefore, the

characterization of integrity respect is still difficult and needs to
be investigated in depth. In this paper, we present a new
approach to assess the integrity respect regarding both the

acquisition tools used and the occurring events. Experimental
results show the suitability of the proposed strategy in order to

characterize a full investigation workflow as well.

Index Terms—Mobile Forensics, Integrity Respect, Forensic

I. INTODUCTION

Mobile Phones (MPs) currently represent one of the most

diffused technologies all over the world [1]; the number of
subscribers overcame 2 billions of units and this number

seems to follow an increasing trend. Hence, in the last four

years, an interesting growth was registered in areas such as

India, China and Latin America. The current capabilities of the

last-generation MPs are extremely interesting from the

forensic perspective [6], due to the large use of additional data

services. In fact, MPs are equipped with a set of interfaces

allowing both long-range (e.g., GSM, UMTS), and short-range

(e.g., Bluetooth, WiFi) communications. Regarding the

computational capabilities, they resemble general purpose

computers more than just phones: in fact, applications with a
wide set of functionalities (e.g., GPS, e-mail, chat, office

automation, multimedia management) are provided in-bundle

in many off-the-shelf MPs. Therefore, the use of these

functionalities drives the quantity and quality of personal

information stored in the MPs. In fact, since that information

deal with all the activities related to the use of the MP, the

data stored by a MP squarely describe habits and behaviors of

its owner.

In this scenario, the number of MPs implicated in crime

activities is relevant and it is growing up [9]. Hence, as MPs

become a widely used tool even in the illegality, the ability to

perform mobile forensic analysis to achieve results in

investigation become every day more important. In [8], some

issues about forensic data acquisition for MPs are outlined,

while in [5] a more extended discussion has been provided.

In this paper, we present a new strategy to perform a

stronger assessment of the integrity respect than the approach

used in [8]. This approach uses an application which has been

specifically designed to capture and to identify any change
occurred in the MP file system, with special care to the

internal memory. In this way, it is possible to correctly

identify every modification and the related operating entity.

This paper is structured as follows. Section II introduces the

importance of the integrity respect assessment in forensic

fields, some common strategies are briefly described with

relation to problems when applied to mobile devices. Section

III briefly describes a new local paradigm to acquire data from

internal memory of MPs, while Section IV describes the role

that such paradigm can play regarding forensic properties

assessment as well. Section V shows both the experiments and
the related results and Section VI presents an example of a

complete workflow coherent with the proposed approach.

II. STATE OF THE ART

A. Background on integrity assessment

As we are interested in forensic tools designed to acquire data

from MPs, a rigorous method to assess the respect of some

fundamental properties is mandatory: the required guarantees

in the forensic environment are strict [7]. In particular, in

order to avoid the evidence poisoning, the former requirement

is represented by the (best) respect of the integrity of the
stored data.

Although only in May 2007, the NIST published a

document [6] covering the specific field of forensic data

acquisition from MPs, a lot of effort was previously made in

order to create a set of rules and guidelines to describe good

practices for their management during the investigations. In

fact, due to the internal memory inaccessibility, the classical

computer forensics rules and guidelines cannot be merely

shifted to mobile devices; probably, the main inhibitor to face

is represented by the unavailability/heterogeneity of the direct

access to all the storage volumes [5]. However, if these rules

and guidelines can help in the filesystem corruption

prevention, they are definitively weak when characterizing

and studying this phenomenon. A further valuable aspect

regarding mobile devices relies on data integrity, which could

be threatened both by occurring events (e.g., incoming calls,

incoming messages, alarms, reminders) (e.g. due to human

errors in well-known procedures), and by operations made

both by forensic operators and by forensic tools. All the

aforementioned remarks seem to suggest that a complete

respect of integrity, during forensic analysis of a MP using the
current methodologies based on software logical acquisition,

is quite unrealistic. Furthermore, the analysis workflow

heavily depends on the initial state of the device; in such

scenario, a minimum level of corruption seems impossible to

be avoided. Hence, regarding mobile forensics, the current

goal is to minimize the degree of corruption of the stored data;

the basic proposed approach is to deeply analyze the

corruption in order to isolate the original information from the

poisoned one, with the intention to use in courts only the

original data. This idea can lead to the definition of two

regions of the acquired data, which can be identified, even in

general, by the use of extended experimentations to mitigate

the per device peculiarities. Furthermore, since the extraction

of a raw image of data stored acting as reference is often

unfeasible, an investigation to state the degree of corruption

represents a relevant step to identify the acquisition reliability

related to the integrity requirement.

Currently, as the validation of forensic tools is a

complicated and expensive task, a lot of manufacturers seem

to be more likely interested in functionalities rather than

strong validation of their forensic tools [5].

Finally, although some authoritative analyses and reports

have been performed by the US National Institute of Standards
and Technology [12], a set of standard procedures for mobile

forensic tools validation, currently, is still under construction.

B. Integrity assessment via code reading

This first strategy is widely used to perform generic software

testing using Code Reading sessions; this technique can be

viable in order to validate forensic tools as well, providing a
fine grained analysis of the behavior of the tool. However, this

approach presents three major issues:

1) The tool must be Open Source: for other tools, as the

source code is not available, it is impossible to perform

a code inspection [7];

2) The whole operational environment must be Open

Source: actually, as the acquisition tool is just a part of

the entire equipment used in acquisition, it is important

to extend the code inspection to the entire environment;

3) The conclusions are only based on a static

comprehension of the tools behaviour and they cannot

take account of dynamic evolution of the acquisition

task.
Unfortunately, regarding Mobile Forensics, this approach

is extremely complex to apply and less used in practice,

because the entire operational environment rarely is

completely Open Source. Hence, the inspection is severely

limited or can be performed on a reduced set of instruments;

such approach, when feasible, is quite always combined with

experimentation in order to draw more reliable conclusions.

C. Integrity assessment via experimentation

This second strategy performs the assessment following an

orthogonal direction: only the dynamic evolution of the tool

and the results are used. This way, more frequently used in

practice, is based on the capability to extract a reference image

of the data to be preserved. A second image of this data is

made using the tool to be evaluated and then a cross-check is

performed between the two images, in order to identify the

differences. This approach presents many practical benefits

with respect to the former, but the validity and generalization

of conclusions could be threatened by the reduced sample size

and its representativeness. In fact, most often, even the
commercial forensic tools are tested over a restricted number

of devices; furthermore, the access to devices that have been

seized in real investigations is limited by law.

Furthermore, regarding mobile devices, it is not always

possible to easily get the required reference image and, in

many cases, the only tool able to get a reference image is the

tool being investigated or a similar one; in this situation it is

not trivial to state what kind and degree of corruption is

caused by the acquisition tool or by additional events.

III. THE MIAT TOOL

The work described in [2], [4], [8] presents a new
methodology to acquire data from smartphones, based on a

new local paradigm dealing with a local connection

established between the mobile device to be acquired, which

become the forensic workstation, and its internal memory file

system. The forensic tool underlying the new methodology

(namely, MIAT - Mobile Internal Acquisition Tool) is a

software application which can be installed directly on the

smartphone using a removable memory card as an installation

volume. During the execution, MIAT mirrors the internal

memory file system into the removable memory card; in such

a way, the whole forensic equipment required to perform an

acquisition is a reduced set of memory cards.

A. MIAT forensic properties assessment

As MIAT aims to be a forensic tool, the assessment of its

forensic properties is required. In [8], an overall assessment

has been provided both for performances and for forensic

properties together with a comparison between MIAT and the

Paraben Device Seizure [13] commercial tool. Experiments
show that both these forensic tools modify a reduced set of

files; this set is composed by OS files, whose utility can be

considered marginal in a forensic investigation. However, the

approach presented in [8] has not the granularity required to

assess if the corruption is due to the acquisition process or to

another cause, because the compared images are collected

using the same forensic tools which are under study.

For this reason, this paper aims at presenting a stronger

analysis of the phenomenon of corruption; the new strategy

allows the separation between the reference image creation

and the acquisition performed with the tool being investigated.
Furthermore, this strategy allows to easily investigate the

corruption due to some occurring events such as incoming

calls, text messages and installation of applications.

IV. A STRONGER STRATEGY

The strategy presented in this paper is based on a monitoring

application called FSMon which has been designed and

implemented exploiting the Symbian OS native APIs. This

application is able to perform a fast image of the entire logical

structure of the internal memory and to be notified of calls to

the file system, in order to detect any modification which

could occur.

Regarding the notification feature, the strong relation

between the FSMon application and the Symbian OS can be

considered as a drawback in terms of portability, however it is

required in order to realize that feature. In fact, at the time of

writing, the technologies supporting portable applications

cannot provide a proper support to the realization of features
which are strongly related to services provided by the OS. At

the same time, the realization of the system call interception

feature for mobile OSs, which is well known for conventional

OSs, is interesting for a large number of applications (e.g.,

proactive malware detection [10], sandboxes [11]) and also

other mobile OSs (e.g., Windows CE [3]).

A. The FSMon Application

This common application can be notified directly by the

Symbian OS File Server when a configurable event occurs;

regarding the objectives of this work, the events of interest are

write operations, files creation and deletion when they

happens on the internal memory file system. FSMon can be

executed in the two different modes:

1) Notification Waiting: when FSMon is spawned in

Notification Waiting mode it uses an endless loop. Each

iteration waits for a notification and, as it occurs, collects last

modification time data for each entry currently present in the

file system. Among the collected data, FSMon searches for the

entries which have been modified, created or deleted within a

restricted time range across the notification time, in order to

identify the file system entries affected by the last notification.

The Figure 1 shows an example of a possible notification time

interval of 2 seconds. This check is suitable only for closed

files: at notification time, if a selected file is still open, a

different schema must be used. In this second case, the current

effective file size is compared with the previous one; if a

mismatch occurs, the file is confirmed. Experiments show that

in the most frequent case, each notification identifies a single

file entry affected. This identification schema is required

because the target Symbian OS version does not offer a

service to directly identify the last-modified entry in the FS.

Figure 1: Entry identification example. The entries with

lastmodification time within the identification time interval

(X) are selected, the others (O) are discarded.

2) File System Structure Imaging: when FSMon is

spawned in File System Structure Imaging mode, it performs a

fast image of the file system tree, including last modification

time for each file entry. This second mode is useful to

investigate the corruptions due to event that FSMon cannot

monitor (e.g., a device reboot).
In both modes, the results are stored into the same

Removable Memory Card (RMC) used to store the FSMon

executable, using a simple text file. In Notification Waiting

mode, this text file contains the file entries affected by each

managed notification, while in File System Structure Imaging
mode , the file contains the collected image.

B. FSMon Implementation

From an implementation perspective, FSMon is a Symbian

application realized using the native API offered by the OS.

FSMon has two fundamental requirements: the integrity

respect and the capability to manage all the raised

notifications. Regarding the first requirement, we will show

how each connection established between FSMon and the

Symbian File Server is intended to respect the integrity.

Regarding the second requirement, FSMon is implemented to

quickly manage each notification; in this way, we minimize

the probability of notifications lost. The notification

management behavior is fully implemented by an

ActiveObject: a read-only connection is established with

the Symbian File Server, which supplies the notification

service via the NotifyChange method in RFs class. This

method is fully customizable, both for events to be notified

and volumes to be monitored. The file system imaging

behavior is implemented by a simple iterative scanning task:

for each file system entry, a snapshot of its attributes is

collected. In order to build such image, a read-only connection

to Symbian File Server is established and each snapshot of file

attributes is collected without opening the interested file.

FSMon must be able to perform write operations onto RMC

volume, in order to store the results; however, this capability

does not threat the internal memory integrity.

V. EXPERIMENTS

This section describes the definition of the experiments

(Section V-A) and the related results (Section V-B).

A. Experiments definition

1) Device state control: First, we need to control the state

of the used mobile device; the degree of control we need must

ensure that each experiment starts and runs under given and

constant conditions. The state of the device is controlled using

four countermeasures:

• The device is hard-formatted before each experiment,

in order to ensure the experiments work on the same

file system image;

• The device is always booted in recovery mode, in order
to ensure that only crucial tasks are executing after the

device boot, while the execution of other tasks is

inhibited; this prevents corruption due to some local

events (e.g., autorun applications);

• The device is booted in offline mode, removing the

SIM card from its slot, in order to ensure the isolation

between the mobile device and the communication

networks; therefore, the environmental events (e.g.,
incoming calls or text messages) cannot corrupt the

stored data.

• Battery charge level is at least 50% and the charger is
not plugged, used to prevent the battery discharge

during the experiments, which could generate unknown

events.

Although the device state, using the countermeasures

shown above, is not a typical operational state, it ensures that

each experiment runs under the same conditions. Hence,

during each experiment we have the same device state, the
same file system structure and, finally, the same running

processes list. Furthermore, in order to prevent any other

source of corruption, we disabled the short-range connections

(e.g., Bluetooth) to avoid any changes due to data transmission

from/to other devices.

2) Subject of the experiments: All the experiments were

performed on the same device, in this case a Nokia N70; this

device is equipped with Symbian OS v8.1a.

3) Treatments: The treatments used during the

experiments can be grouped in two several sets: Forensic tools

(discussed in Section V-B1) and Device events (discussed in

Section V-B2). Regarding the first set, we used both MIAT-

S60 [8] and Paraben Device Seizure v1.3.2824.32812 [13].

Regarding the second set, we selected the following

interesting events:

• Device reboot;

• SIM card removal;

• MIAT installation;

• RMC extraction and insertion;

• Environment related events;

• Events related to data acquisition.

4) Replication: Replication is one of the most crucial

aspects in forensic experimentation; generally, the replication

of experiments is strongly related to the validity and the

generalization of the experimental results. However, when

applied to forensics, experimentation has to face with legal

issues and limitations. Often, the most representative devices

are those seized in real investigations, but this kind of devices

are not freely available. In our experiments, we used a single

device; however, this item does not undermine the conclusions

drawn because our objective is simply to characterize the

behaviour of the tested forensic tools and of the occurring

events. Obviously, only a more extended experimentation,

including a wide set of different device models, can lead to

more general conclusions.

5) Experimental workflows: In order to perform a right

description of the performed experiments, we defined the

following three workflows.

a) Characterization of forensic tool behaviour: Aiming
at investigating the dynamic evolution of forensic tool

execution. The measures are collected by FSMon and a cross-

check with data acquired is performed. The workflow steps

are the following:

1) Device format;

2) FSMon startup in mode 1;

3) Forensic tool execution;

4) FSMon block.

b) Characterization of simple events: Aiming at

investigating the file system corruption due to the occurrence

of events that FSMon is able to monitor. The workflow steps

are the following:

1) Device format;

2) FSMon startup in mode 1;

3) Forensic tool execution;

4) FSMon block

c) Characterization of complex events: This kind of

experiments has the same objective of the previous but some

events (e.g., device reboot, SIM card removal) cannot be

monitored by FSMon. In this case, the workflow steps are the

following:

5) Device format;

6) File System structure image using FSMon in

mode 2;

7) Event occurrence;

8) File System structure image using FSMon in

mode 2.

6) Corruption verification: In Section IV-A, we stated that

if a last-modification time change is discovered, a corruption

is detected; however, the experiments shown that some files,

although storing the same content, have different

lastmodification times. This phenomenon could be motivated

in several ways. It is possible that a sequence of operations

does not alter the whole file content, it is possible that a file is

fully rewritten; in these cases, the content does not change but

the last-modification time does. Our approach to solve this

problem is to perform a cross-check between the additional

information collected by MIAT and the changes notified to

FSMon; this check is performed using the MD5 hash-code in

order to effectively identify the differences in the content of

files. Although, the phenomenon of collisions in hash-codes is

always possible, we consider the probability of such event as

negligible; furthermore, as a reduced set of files seems to be

modified by MIAT, we have not used these files in our cross-

check.

B. Experimental results

The results are grouped according to the used treatment

regarding the classification made in Section V-A3. Each

experiment is summarized using a table, whose format is the

same for each experiment; for practical reasons the name and

path of the files are omitted. The first column shows the

monitored operations, the second column shows the results

obtained using only FSMon (FSMon), the third column shows,

if applicable, the cross-check results (CC). Each inner cell

contains two numbers separated by a colon: the first represents

the number of generic files which has been changed, while the

second represents the number of user-data files among generic

ones which has been changed. Further tables are used to
clarify some particular aspects.

1) Forensic tools:

a) MIAT acquisition: The workflow described in

Section V-A5a was applied twice, in order to collect both

write operations and files creation/deletion. As TABLE I (a)
shows, FSMon reports 3 files modified during the acquisition

process; however, two files of those are modified only after

their acquisition is completed. In other words, the MIAT

images of these two files contain the same data stored by the

original files before the acquisition. TABLE I (b) shows time

measures to ensure that the modification of these files occurs

only after their acquisition. The third file is modified only

right after a device format, while further MIAT acquisitions

do not change that file.

TABLE I: MIAT Acquisition Experimental Results.

(a) Detected Corruption

Operation FSMon CC

Write 3:0 -:-

Creation 0:0 -:-

Deletion 0:0 -:-

 (b) Interesting Times

Time CntModel.ini nssvasdatabase.db

Last-Modification 18:31:46 18:39:44

Acquisition begin 18:31:33 18:35:17

Acquisition end 18:31:33 18:35:17

TABLE II: Paraben Acquisition Experimental Results.

Operation FSMon CC

Write 8:0 5:0

Creation 1:0 1:0

Deletion 1:0 1:0

b) Paraben acquisition: The workflow described in

Section V-A5a was applied twice, in order to collect both

write operations and files creation/deletion. TABLE II

summarizes the experimental results regarding Paraben

acquisition. Furthermore, our experiments confirm what stated

in [8]: Paraben misses the ‘‘Private’’ and

‘‘_PalbTN’’ folders.

2) Device events:

a) Device reboot: The workflow described in V-A5c
was applied once. TABLE III (a) summarizes the results

regarding the first reboot right after a device format, while

TABLE III (b) describes further reboots. Comparing these two

tables, we can state that the degree of corruption due to a

device reboot is affected by a previous format process.

TABLE III: Device Reboot Experimental Results.

 (a) First Reboot

Operation FSMon CC

Write 16:1 8:1

Creation 1:0 1:0

Deletion 0:0 0:0

 (b) Further Reboot

Operation FSMon CC

Write 14:0 4:0

Creation 0:0 0:0

Deletion 0:0 0:0

TABLE IV: Sim Card Removal Experimental Results.

(a) First Removal

Operation FSMon CC

Write 21:1 8:1

Creation 2:0 2:0

Deletion 0:0 0:0

(b) Further Removal

Operation FSMon CC

Write 16:0 6:0
Creation 0:0 0:0

Deletion 0:0 0:0

b) SIM card removal: The workflow described in V-

A5c was applied once. TABLE IV (a) summarizes the results
of the first SIM card removal right after a device format, while

TABLE IV (b) describes further SIM removals. Comparing

these two tables, we can state that the degree of corruption due

to a SIM removal is affected by a previous format process.

TABLE V: MIAT Installation Experimental Results.

 (a) First Installation.

Operation FSMon CC

Write 3:0 -:-

Creation 2:0 -:-

Deletion 1:0 -:-

(b) Further Installations.

Operation FSMon CC

Write 3:0 -:-

Creation 1:0 -:-

Deletion 1:0 -:-

c) MIAT installation: In order to acquire data with
MIAT, the operator should proceed, firstly, with installation;

hence, we need to investigate the degree of corruption caused

by this action. The workflow described in V-A5b was applied

twice, in order to collect both write operations and files

creation/deletion. In this case, we cannot apply the cross-
check because MIAT cannot be used without being installed.

TABLE V (a) summarizes the results right after a device

format, while TABLE V (b) describes further installations; the

additional file, which has been created during the first

installation, is the log of the installed applications.

d) RMC extraction/insertion: In order to acquire data

with MIAT, a memory card replacement is required; hence we

need to investigate the degree of corruption caused by this

action. The workflow described in V-A5b was applied twice,

in order to collect both write operations and files

creation/deletion. TABLE VI summarizes the experimental

results related to this event. Our experiments state that a

complete replacement implies the same corruption of a simple

extraction or a simple insertion; it is worth noticing that the

corruption due to this event can depend on the data stored by

the RMC (e.g., backups of the phonebook).

TABLE VI: RMC Replacement Experimental Results.

Operation FSMon CC

Write 3:0 -:-

Creation 0:0 -:-

Deletion 0:0 -:-

e) Environment related events: This part exposes the

results related to some interesting environmental events; for

each of those, we applied twicethe workflow described in V-

A5b, in order to collect both write operations and files

creation/deletion. In particular, we focused on the following

three events:

• Ingoing/outgoing Voice Call. TABLE VII (a)

summarizes the related results. As expected, the

detected write operation affects the log-file of the local
events.

• Ingoing text message. TABLE VII (b) summarizes the

related results. The detected file creation refers to a

new file which is created for each received message

and contains the text just received, while the write

operation affects the index file for the stored messages.

• Ingoing E-Mail message. TABLE VII (c) summarizes

the related results. The detected file creation refers to a

new file which is created for each new message and

contains the data just received, while the write

operations affect the log-file of the local events (as the
E-Mail was retrieved through a data call) and the index

file for the stored messages.

f) Events related to data acquisition: This part exposes
the results related to some events that can be strictly related to

data acquisition; for each of those, we applied the workflow

described in V-A5b twice, in order to collect both write

operations and files creation/deletion. In particular, we

focused on the following three events:

• Online/Offline mode software switch. In order to

acquire data using MIAT, the phone should be isolated

from the network; this can be achieved by a software

switch.

• Battery charger plugging. The data acquisition can

require a lot of time regardless of the used tools. In

order to avoid this process to be stopped by low power,
the device could be connected to the battery charger.

• USB cable plugging. In order to acquire data from a

phone it could be connected to a forensic workstation

by USB cables.

The experiments show that no files have been modified, nor

created, nor deleted by none of the above events.

TABLE VII: Experimental Results Related to Environment Related

Threats.

(a) Voice Call.

Operation FSMon CC

Write 3:0 -:-

Creation 0:0 -:-
Deletion 0:0 -:-

(b) Ingoing Text Message.

Operation FSMon CC

Write 3:0 -:-

Creation 0:0 -:-

Deletion 0:0 -:-

(c) Ingoing E-Mail.

Operation FSMon CC

Write 3:0 -:-

Creation 0:0 -:-

Deletion 0:0 -:-

VI. MIAT ACQUISITION WORKFLOW

The entire MIAT acquisition workflow can be characterized,

from the perspective of the integrity respect, using the

experimental results presented in Section V-B; our goal is to

provide a description of how events can interoperate in each

possible flow of events. As the state of the device to be

acquired and the crime scene equipment cannot be known a-

priori, we grouped all the possible flows in a single flow-chart;

the Figure 2 shows such chart where each path from start to

stop blocks represents a complete operational flow. The

expected corruption of an entire flow can be obtained

computing, for each dimension, the set-theory union over the
events in the path.

Figure 2: Corruption evaluation for the whole MIAT

acquisition workflow. Each functional step is described by a

triple whose dimensions, respectively, measure the number of
files modified, created and deleted during the step.

VII. CONCLUSIONS

Strong assessment of properties for mobile forensics tools is a

difficult task and, often, a rarely performed step during the

design and the implementation of some tools. However, Open

Source software and Open Source communities encourage the

deep testing and assessment of general purpose applications;

furthermore, by source code examination, a number of

conclusions can be drawn. These advantages should be

exploited especially for the assessment of forensic tools and to

provide fairness between prosecutor and defense in the legal

environment. At the same time, regarding mobile devices the
corruption of stored data seems hard to be totally avoided; a

current and realistic goal could be both to minimize and to

characterize the corruption during the entire investigation

workflow.

In this paper, we presented a new strategy to characterize the

internal memory file system corruption due both to forensic

tools and occurring events; our strategy is applicable to Open

Source and to commercial tools as well. Further experimental
results allowed performing a characterization of the entire

MIAT collection workflow; such characterization could guide

the forensic operators throughout the management of devices

discovered in crime scenes, in order to minimize the degree of

corruption.

REFERENCES

[1] Kalba, K.: The adoption of mobile phones in emerging

markets: global diffusion and the rural challenge.

International Journal of Communication vol. 2, pp. 631–661

(2008).

[2] Me, G., Rossi, M.: Internal forensic acquisition for mobile

equipments. In: 4th International Workshop on Security in

Systems and Networks, Proceedings of the International

Parallel and Distributed Processing Symposium (2008).

[3] Becher, M., Hund, R.: Kernel-Level Interception and

Applications on Mobile Devices. (2008).

[4] Dellutri, F., Ottaviani, V., Me, G.: MIAT-WM5: forensic

acquisition for Windows mobile PocketPC. In: 2008

Workshop on Security and High Performance Computing

Systems, part of HPCS (2008).

[5] Jansen, W., Delaitre, A., Moenner, L.: Overcoming

Impediments to Cell Phone Forensics. In: 41th Annual

Hawaii International Conference on System Sciences, part of

HPCS (2008).

[6] Jansen, W., Ayers, R.: Guidelines on cell phone forensics

recommendations of the National Institute of Standards and

Technology. (2007).

[7] Carrier, B.: Open source digital forensics tools the legal

argument. (2003).

[8] Distefano, A., Me, G.: An Overall Assessment of Mobile

Internal Acquisition Tool. Journal of Digital Investigation

vol. 5, pp. S121–S127 (2008).

[9] Williamson, B., Apledoorn, P., Cheam, B., McDonald, M.:

Mobile forensics turns up heat on suspects.

http://www.theregister.co.uk/2007/02/11/mobile forensics

guidance/ (2007).

[10] Becher, M., Freiling, F.C.: Towards Dynamic Malware

Analysis to Increase Mobile Device Security. In:

SICHERHEIT (2008).

[11] Willems, C., Holz, T., Freiling, F.: Toward Automated

Dynamic Malware Analysis Using CWSandbox. IEEE

Security and Privacy, vol. 5, issue 2, pp. 32-39, (2007).

[12] National Institute of Standards and Technology - Information

Technology Laboratory: Computer Forensics Tool Testing

Program. http://www.cftt.nist.gov/mobile devices.htm

[13] Paraben Corporation: Paraben’s Forensics Software.

www.paraben.com

