
SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 2, NO. 1, JUNE 2008 ISSN# 1941-6164 1

An Integrated Approach to Recovering Deleted
Files from NAND Flash Data

James Luck & Mark Stokes

Abstract—Conventional techniques for recovering deleted files
often prove useless in recovering files in general and video files in
particular, from downloads of the raw memory data from mobile
telephones (containing NAND flash memory). Several factors that
are relied upon conventionally do not occur in mobile telephones.
This paper presents an approach for recovering deleted files in
general and video files in particular from NAND flash data files:
starting with rebuilding the FAT partition, through recovering
files from lost cluster chains and culminating in a methodology
for enhanced extraction of deleted and corrupted video files by
using the MPEG-4 meta data. Examples of successful video file
extractions are given and the advantages illustrated. The struc-
ture of FAT volumes and MPEG-4/3gp video files as implemented
on mobile telephones is also described.

Index Terms—MPEG-4, mp4, 3gpp, 3gp, FAT rebuild, cor-
rupted video, forensic digital, data recovery

I. INTRODUCTION

TECHNIQUES for the recovery of deleted files from
magnetic media are well established [1], but those for

the recovery of deleted files from mobile telephone handsets
(hereafter, ”handsets”) are much less so. Many handsets use
variants of the FAT file system [2], [3], originally created
by Microsoft for the IBM PC, to maintain media files such
as pictures and video clips in NAND flash memory. The
differences between the implementations on a handset and on
a PC make the recovery of deleted files from the handset more
difficult. In particular, the starting cluster (SC) in the directory
entry may be overwritten upon deletion and there may be
multiple versions of sectors with the same Logical Sector
Number (LSN). In addition, in NAND flash, file sectors may
be deliberately distributed throughout the physical memory
and their LSNs may not be continuous. The purpose of this
paper is to present an approach for overcoming these diffi-
culties in recovering deleted files from handsets and present
a methodology specifically for recovering deleted video files.
Video files often occupy hundreds, even thousands, of sectors
in memory. If any of the sectors have been erased (reset to
0xFF) or if a single sector is placed in the extracted file
erroneously then the recovered video may fail to play at all;
this is particularly significant in recovering deleted files. The
MPEG-4 video file format separates the media data (video
and audio tracks, for example) from the meta data (data that
instructs the codec on how to interpret the media data). The
meta data contains tables that give the offsets and the type
of all the video and audio samples within the media data. If
the, small, meta data part can be extracted first then it can
be used to guide the extraction of the, much larger, media
data part leading to a vastly improved chance of a successful
extraction. Further, as erroneous sectors can be identified and

replaced with null sectors (0x00), incomplete video files can
still be played on readily available video playback software
(e.g. Apple QuickTime 7). We have called this methodology,
”Xtractor”. The three major stages in the approach are: (i)
Rebuild the FAT, where appropriate, and extract extant files
1 (Sec. 3), (ii) recover any lost clusters and associated files
(Sec. 3.B.6.), (iii) use Xtractor for enhanced video recovery
(Sec. 5). Xtractor can also be used independently. The structure
of a FAT volume is explained in Sec. 2 and that of an
MPEG-4 file in Sec. 4. In this paper hexadecimal numbers
are denoted with the prefix ”0x”, binary numbers with ”0b”.
All un-specified numbers are decimal with the exception of
the data in the example figures, which are hexadecimal or
binary, as applicable, with decimal offsets. The binary file of
the raw memory data downloaded from the handset memory
will be called the Source File. The term ”sector” shall refer
to a physical sector in the memory chip or in the Source File.
The term ”page” shall refer to the data of a sector in a media
file. A sector size of 512 bytes will be used throughout. The
offset from the beginning of a file will be termed the ”offset”,
whereas ”Page Offset” will be the offset from the beginning of
a page. Sectors also have associated meta data that provides
information about the sector; this is often called the ”Spare
Area” data. Sectors and associated Spare Area have been
assigned a notional sequential number, starting from 1, called
its Master Index (MI) value. Each sector is thus identified
uniquely in the Source File and can be accessed directly from
its MI value.

Here we have the typical use of a ”T” for an initial drop
letter and ”HIS” in caps to complete the first word. You
must have at least 2 lines in the paragraph with the drop
letter(should never be an issue)

II. THE FAT VOLUME IN HANDSETS

A brief overview of the File Allocation Table (FAT) file
system will be given here along with a description of the dif-
ficulties encountered in recovering deleted files from handsets
that have FAT-based file systems.

A. The FAT Structure

A map of the FAT volume from a Nokia 6230 hand-
set (software version: 5.24, NAND flash chip: Samsung
KEE00E00CM) is shown in Fig. 1. There was no Master Boot
Record (MBR) in this example and the first sector was the
Volume Boot Record (VBR), occupying 1 sector. As handset
memories often consist of only a single volume, the MBR

1Files that have not been deleted.



SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 2, NO. 1, JUNE 2008 ISSN# 1941-6164 2

Fig. 1. FAT volume from a Nokia 6230 handset. Predefined sectors (yellow):
VBR, FAT-1, FAT-2, root directory; data sectors (blue): 4 sectors per cluster

may or may not exist. The VBR was followed by FAT-1 and
FAT-2 (11 sectors each) and then by the root directory (32
sectors). The data area extended from sector numbers 55 to
14914 (cluster numbers 2 to 3716) with the first 460 sectors
occupied by sub-directories. In handset memories it is unlikely
that the data from an individual file will reside in contiguous
clusters.

Each file will have a directory entry with the starting-cluster
(SC) of the file (see Fig. 2) and, separately, there will be
a list of the clusters used by the file, the cluster chain . 2

Fig. 2 shows an extant directory entry in FAT format from a
handset. The handset supports long filenames (LFN) so there
is a DOS block (the last 32 bytes) and a number of 32-byte
LFN blocks. The number of LFN blocks that are occupied
by a single entry depends on the length of the LFN and is
given by the size byte of the terminal block (the initial byte
of the top LFN block, in this case 0x43 means three blocks)
and the order of the blocks is given by the ordinate field (the
initial byte of the middle two LFN blocks). In this case the
order is: DOS block - ”0x01” - ”0x02” - terminal block. The
LFN can be seen to be ”User Content Package o2pos uk”
and the DOS or Short File Name (SFN) can be seen to be
”USERCO˜1”. The attributes byte (offset 11 in each block)
is used to discriminate between LFN and DOS blocks: LFN
blocks have attributes that could not occur for a valid DOS
entry. Attributes is variable for the DOS block (0x63 here) and
is 0x0F for the LFN blocks in this case. The SC (offsets 26,
27 in the DOS block) is 0x0125. Also shown in Fig. 2, from
the DOS block are: the modification-time, 0x4E85 (offsets
22 & 23); modification-date, 0x3179 (offsets 24 & 25) and
file-size, 0x00000030 (offsets 28-31). These fields follow the
standard DOS format [2], [3]]. The creation-time & creation-
date and the accessed-time & accessed-date were not used by
this handset.

2The cluster chain is contained within the File Allocation Table, from which
the file system gets its name.

Fig. 2. Directory entry (Nokia 6230) with ”initial” bytes (orange), attributes
(green), SC (yellow), modification-time (pink), modification-date (brown) and
file-size (blue): Before deletion

Fig. 3. Directory entry (Nokia 6230) with ”initial” bytes (orange), attributes
(green), SC (yellow), modification-time (pink), modification-date (brown) and
file-size (blue): After deletion, with overwritten initial byte and SC

B. Complications Inherent in Handset FAT File Systems

In the FAT file systems implemented on handsets, there
are frequently several factors that complicate the extraction
of deleted files.

C. Deleted Directory Entries

If the entry in Fig. 2 were to be deleted (as in Fig. 3), the
initial byte in every block making up the directory entry would
be overwritten with 0xE5. In this 4-block entry the file-size,
both ordinates and the first character of the SFN have all been
lost. Because characters of the LFN itself are not overwritten
the full LFN can be recovered. In magnetic media it is normal
for the SC to remain intact. The SC in this handset has been
overwritten with 0x0000 by the handset software severing the
link to the cluster chain in the FAT. This precludes recovery by
simple un-deletion. The modification-time, modification-date
and file-size are un-affected by the file deletion.

Sectors are also marked in the Spare Area as deleted.
Immediately after deletion the file structures and the file data
still exist in memory, however all are then vulnerable to being
erased (reset to 0xFF) and subsequently overwritten by new
files. Adding new directory entries during normal usage leads
to the creation of multiple versions of sectors containing old
directory entries (see Sec. 2.B.4), as these versions have not
been deleted by the user they may contain the information lost
from the deleted entries described above. Recovery of these
sectors, where possible, can therefore be beneficial.

D. Non-Contiguous Physical Sectors

One attempt to circumvent the loss of the SC would be
to extract a sequence of contiguous physical sectors starting
from an identifiable file header (e.g. a sector containing an
ASCII ”ftyp” for a MPEG-4 video). In the handset memory
the sectors of a single file are often distributed throughout
the physical memory, for the purpose of wear-levelling the
memory chip. Also there may be multiple versions of the same
logical sector (see Sec. 2.B.4) interleaved with the required
sectors. The file, therefore, does not exist in contiguous
physical sectors defeating conventional file carving attempts.



SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 2, NO. 1, JUNE 2008 ISSN# 1941-6164 3

E. Non-Continuous LSN Sequences

When a handset has been in use for some time it is very
likely to have had several files stored in memory, some files
deleted and new files stored, with the process repeated many
times. The result can be a number of interleaved sequences
of LSNs with the LSNs from one file being interleaved with
those of another. An attempt to extract a file by following its
sequence of LSNs may result in sectors from other files being
included. This could prevent genuine sectors of a jpg file that
occurred later in the file from being viewed and may prevent
a video file from being played at all.

F. Multiple Versions

NAND flash memory obtains a speed enhancement by eras-
ing (i.e. returning bits to state ”1”) entire blocks of memory
in a single event. Consequently, to change even a single bit
from state ”0” to state ”1” the entire ”erase-block” has to
be erased resetting every bit in the erase-block to state ”1”.
Hence all the bytes in ”Free” sectors in flash memory are
characteristically ”0xFF”. During the normal creation of a file,
as the data is being written to flash memory, if a sector needs to
be modified the whole sector has to be copied to a new sector
with the revision 3 . The ”old” sector should then be marked as
deleted. There should, therefore, be one ”valid” sector and one
or more ”deleted” counterparts, with all versions of a sector
having the same LSN. In practice, all of the ”old” sectors
might not be deleted, leaving several ”valid” versions. In the
recovery of extant files this may be problematic. For files
deleted by the user this may actually be useful in identifying
the desired sector. Once a file has been deleted all of its sectors
are marked as deleted. As many of the ”old” versions are
marked as deleted also, sector status alone cannot then be
relied upon to identify the desired version. We have observed
that when a sector is copied as part of the updating process it
is typically copied to a higher memory address, remaining in
the same block and often copied by just one or a few physical
sectors. The version that occurs at the higher memory address
is, thus, the most likely to contain the latest data, as reported
by Breeuwsma et al. [4]. These observations led to the creation
of ”Version Tables” (see Sections 3.B.1 & 5.B.3) to assist in
the selection of a particular version of a logical sector to use
in file reconstruction.

III. REBUILDING THE FAT VOLUME

Rebuilding a FAT volume from the Source File involves
placing the logical sectors in the position of the physical
sectors with the same respective sector number 4. An example
was given in Fig. 1. To rebuild the FAT volume the LSN from
the Spare Area is required. The existence of multiple sector
versions will have to be accommodated and can be to the
advantage of the forensic examiner as earlier versions of the
FAT volume may be retrievable.

3As sectors have to be written in their entirety the remaining bytes of an
incomplete sector will be 0xFF. When the sector is completed the existing
data will be copied to a new sector with the remainder of the data.

4When the logical sectors have been placed in their correct physical location
the LSN and physical sector number are the same.

Fig. 4. VT for FAT reconstruction: MI values for different versions of each
logical sector

A. Multiple Versions

Our process consists of six major steps: (i) Build Version
Table, (ii) rebuild FAT volume, (iii) analyse VBR, (iv) extract
directory, (v) extract extant files, (vi) recover lost chains and
lost files. These individual procedures will now be explained:

B. Rebuilding Process

1) Build Version Table: In the Source File, there can
exist multiple sectors with the same LSN. To assist with the
rebuilding process a table is made of MI values of each sector
with the same LSN. This will be called a Version Table (VT),
see Fig. 4. The MI values in the table are in the order in which
they are located in the Source File: entries to the left are at
the lower memory address and those to the right are at the
higher memory address. It can be seen that there was only
one version of the sector with LSN = 0, seven with LSN = 1
etc.

2) Rebuild FAT Volume: The process of rebuilding a FAT
volume consists of selecting, by its MI value, from the VT, a
version of a sector for each LSN. If a LSN does not exist in the
Source File it is replaced with a null page in the FAT volume
to maintain the correct offsets. By choosing different versions
of the sector, different versions of the FAT volume can be
constructed e.g. that which consisted of sectors which existed
at the highest or lowest memory address. Depending on the
Spare Area data available for the sector, it may be possible to
construct FAT versions that consist of chronologically earliest
or latest versions, or are made from deleted or extant sectors.
In our implementation a manual choice option has been
provided so that individual sectors can be chosen. Full logging
of the extraction has been included for forensic reporting.

3) Analyse VBR: We have found that the VBR in a handset
closely follows the DOS standard [2], [3]. From the VBR
the sector size, the number of FATs, the number of sectors
per FAT, the number of sectors per cluster, the size of the
VBR, the size of the Root Directory and the total number of
sectors can be obtained. From this information the map of
the volume shown in Fig. 1 was constructed. Note that the
next sector following the root directory is the first sector of
the first data cluster; this data cluster is cluster number two,
and the sector numbering in the FAT volume starts from zero.
The relationship between cluster number in the FAT and the
physical cluster is thus determined and can be used to extract
files according to the cluster chain.

4) Extract Directory: From the rebuilt FAT volume the
directory entries can be read. In the case of extant entries this
is straightforward and can be achieved either recursively or, if
the extent of the directory entries is pre-discovered, linearly.
Note that the sub-directories occupy part of the data area.



SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 2, NO. 1, JUNE 2008 ISSN# 1941-6164 4

The most interesting directory entries are, usually, the deleted
entries. The number of 32-byte blocks that are occupied by a
single deleted entry depends on the length of the LFN; in the
undeleted case this was given by the file-size and the order of
the blocks was given by the ordinate field (see Fig. 2). It can be
seen from Fig. 3 that in the deleted case both the file-size and
the ordinate field have been lost. If there are several deleted
LFN entries abutting one another then it will be necessary to
discriminate between the separate directory entries. From our
experience the order of the LFN blocks and the DOS block is
invariant (the ordinate field is, therefore, redundant). Reading
upwards; the DOS block is first, followed by the LFN blocks
in their correct order. It is thus only necessary to discriminate
between LFN and DOS blocks to discriminate between the
separate directory entries; this is done via the attributes byte.
As the definitive ordering has been lost, care must be taken
to check the handset under examination and when reporting
such results in evidence.

5) Recovering Extant Files: The extant files indexed in the
directory have their SCs intact and can easily be extracted by
following their cluster chains. Any application that can mount
a FAT volume will be able to read the extant files and probably
the deleted directory entries also (but not the deleted files).

6) Recovering Lost Chains and Deleted Files: For files that
have been deleted, where the SC has been overwritten, the
link between the directory entry and the cluster chain will
have been lost. The cluster chain, however, might still exist
in memory and if it can be recovered the file may still be
recovered from it. The File Allocation Table itself is just a
numbered list of numbers (irrespective of the number of bytes
used per entry, i.e. whether it is FAT 12 or FAT 16). An entry
in the FAT refers to both the number of a cluster in the file
and the number of the next entry in the list. For example, if
entry number 6 is the number 7 then cluster 6 is in the file and
entry 7 says what to do next. If entry 7 is another valid number
then cluster 7 is in the file and the number denoted by entry
7 continues the sequence until the entry is the ”end” value
(e.g. 0xFFF for FAT 12, 0xFFFF for FAT 16). This is how
the handset normally accesses the files with the first number
in the chain being the SC from the directory entry. It is not
known, a priori, where every chain starts nor is it known, in
reconstruction, whether a particular chain is complete5 . To
ensure that all chains that exist in the FAT, including all lost
chains and partial fragments of lost chains, are extracted it
is necessary to follow every chain starting from every entry
in the FAT. For example if the chain 6-7-8-end exists then
6-7-8-end, 7-8-end & 8-end will be found in the FAT (the
extracted chains can then be examined to remove the sub-
chains). Note that unused entries in the FAT may effectively
reference Cluster 0 and must be terminated.

IV. MPEG-4 & 3GP FILE FORMAT

Information contained within MPEG-4 & 3gp files may
be useful to a forensic examiner attempting to reconstruct

5The chain might have been partially erased or part of it might have existed
on another sector that has not been included in the specific FAT volume
reconstructed.

Fig. 5. 3gp file header: size (blue), ftyp and mdat markers (yellow), and
brands (green)

deleted video files. Also, the structure of the video file forms
a vital part of the extraction methodology described in Sec.
5, so a description of the file format, as applicable to handset
video, will be given in this section. The 3gp example data
are from a Nokia 7600 and the MPEG-4 example data are
from a Samsung D600. The file formats of MPEG-4 and 3gp
video files, commonly found on handsets, are defined by 3GPP
[5] and largely conform to the MPEG-4 standard: ISO/IEC
14496 pt.12 [6] and pt.14 [7]. See also, Pereira & Ebrahimi
[8] for a good description. MPEG-4 files usually have the
file extension ”mp4”, and 3gp files, ”3gp”. MPEG-4 files are
made up of a number of units called ”atoms”. Atoms can
contain information or other atoms. Three atoms exist at the
uppermost level of the hierarchy: the ”file-type” atom, ftyp,
identifies the file as a 3gp or MPEG-4 video file and serves as a
file header; the ”media-data” atom, mdat, contains the digital
encoding of the video and audio content; and the ”movie-
data” atom, moov, contains meta data, which describes the
content. Video and audio quanta are called samples6 . The
moov atom contains nested sub-atoms; some of these sub-
atoms contain tables of the offsets within the file of the video
and audio samples. A collection of video or audio samples is
called a ”chunk”. An mdat atom may consist of any number
of alternating audio and video chunks or runs of several audio
or video chunks or any combination thereof.

A. Top-level Atoms

An example of a video header is given in Fig. 5 and will
serve to describe some of the salient features of the atoms’
structure. An atom has a 4-byte name (chosen to be visible
as ASCII text), in this case: ”ftyp”. Preceding the name is the
4-byte atom size: 0x00000018 = 24 bytes. The ftyp atom
contains ”brands” which identify a specification to which the
file conforms [5]. Examples include ”3gp5” for 3gp release 5
and ”isom” for MPEG-4. The brand, however, is not definitive
and the stsd atom (Sec. 4.C.2) should be consulted for
codec specification. Also shown in Fig. 5 is the header of
the mdat atom, with mdat size: 0x000471BA = 291,258
bytes. An example of a moov atom7 header in given in Fig. 6,
with moov size: 0x1560 = 5,472 bytes (omitting superfluous
leading zeros). The sum of these three atom sizes gives the
size of the complete video file: file size = 296,754 bytes.

B. Identifiable Headers Within an mdat Atom

Individual video and audio samples within an mdat atom
start with identifiable headers. By maximising the number of

6MPEG-4 samples are not instantaneous values of a waveform; rather they
are encoded frames of video or audio.

7Some video clips have the moov atom and mdat atom interchanged
compared to this example; the principle of the extraction methodology
described in Sec. 5 is unaffected.



SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 2, NO. 1, JUNE 2008 ISSN# 1941-6164 5

Fig. 6. 3gp moov atom header: size (blue), moov and mvhd markers
(yellow), and time stamps (see Sec. 4.4)(green)

Fig. 7. Header from H.263 video frame, ”b” is an arbitrary bit

predicted bits in the header the maximum discrimination of
video and audio samples in the Source File can be achieved.
In each header some bits will be fixed, e.g. start codes, some
will be parameters, e.g. frame dimensions, and others will vary
from sample to sample. The headers depend upon the video
and audio coding schemes and the specific parameters within
those schemes. Several different schemes are available for use
in MPEG-4 and 3gp video [5]. 3gp with ITU H.263 video
[9] and AMR (Adaptive Multi-Rate) audio [5] is the most
common format recorded by handsets. Some manufacturers,
notably Samsung, predominantly use mp4 with MPEG-4 video
[11] and AAC (Advanced Audio Coding) audio [12].

1) H.263 Video: The frame is byte aligned and has the
following fields [9], see Fig. 7 : Picture Start Code (PSC), 22
bits; Temporal Reference (TR), 8 bits; Picture Type (PType), 13
bits; PQuant, 5 bits. The PSC is a 22-bit fixed code consisting
entirely of 0s except for one 1 at bit offset 16.

The TR is in effect a modulo-256 index of the stored
frames, however as not all frames are stored this index can
typically increment by 2 or 4 between adjacent stored frames.
In addition some frames may not be included resulting in an
incomplete TR sequence. This makes it difficult to use the TR
to identify frames from a deleted file as it is not known a priori
what the exact TR sequence should be. PType is a collection
of bits and flags8 , most of which remain constant from frame
to frame; the most important to this work are as follows. Bits
at offsets 30 and 31 are always ”1” and ”0” respectively to
prevent code emulation. Bits at offsets 32-34 and 39-42 have
been observed to be invariant and equal to 0. Bits at offsets
35-37 are the Source-Format: 0b001 means sub-QCIF (128
96 pixels) this can be predicted from the s263 atom in Sec.
4.C.2. The bit at offset 38 is the Picture-Coding-Type: 0 for
an I-frame (intra-coded) and 1 for a P-frame (inter-coded).
The first sample would be expected to be an I-frame and
subsequent samples P-frames (see Sec. 4.E). PQuant (offsets
43-47) indicates the quantizer to be used [9]; this is likely to
change from frame to frame. Thus the number of predictable
bits in the frame header is 34 (35 including Picture-Coding-
Type). The two most significant bits of the TR (offsets 22, 23)
are the two least significant bits of the least significant byte
holding the PSC. This causes the video frames to appear to
have one of the four characteristic tags 0x000080 - 83. Fig. 8
shows 0x000080 tags in a video file at offsets: 1,568, 2,094,

8A typical example of PType parameters encountered on a handset is given
here.

Fig. 8. H.263 video data showing tags: 0x000080 (red font)

Fig. 9. AMR audio frame, ”b” is an arbitrary bit

Fig. 10. AMR audio data showing tags, 0x3C (red font)

and 2,255.

2) AMR Audio: The AMR codec can be configured to
operate in a number of different modes, which determines
the bit rate and the number of bits in an AMR frame and
hence the number of bits in an audio sample. The structure
of an AMR frame [10] is shown in Fig. 9. The frame is byte
aligned and has the following fields: frame-type (FT), 4 bits;
Frame-Quality (Q), 1 bit; audio payload data. Stuffing bits
(SB) are inserted in the header and at the end of the frame
to achieve an integer number of bytes per frame. FT gives
the mode, 0b0111 = 7, corresponding to 12.2kbit/s with 244
audio bits per frame [13]. The mode is given independently
by the mode-set parameter in the damr atom (Sec. 4.C.2).
Four stuffing bits are required at the end of the frame to
maintain byte-alignment; making the frame size 32 bytes. We
have seen that Q = 1 for video shot and stored on the same
handset. Thus there are 8 bits that can be predicted and the
characteristic 0x3C tag can be seen in Fig. 10. Eight bits are
generally insufficient to form a reliable tag; however, for non-
initial frames in a chunk the tag can be augmented by the
four stuffing bits (0b0000) preceding the AMR header and the
regular frame pitch can be exploited.

The damr atom (Sec. 4.C.2) gives the number of frames
per sample as four. The size of an audio sample is, therefore,
128 bytes and audio samples can be seen to be at offsets: 32,
160, etc. in Fig. 10.



SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 2, NO. 1, JUNE 2008 ISSN# 1941-6164 6

Fig. 11. Header from AAC audio frame

3) MPEG-4 Video: The tag for an MPEG-4 Video Object
Plane (VOP) 9 consists of the Start-Code-Prefix: 0x000001,
followed by the VOP-Start-Code = 0xB6 [11], after van der
Knijff [14]. The next 2 bits give the VOP-Coding-Type: 0b00
for an ’intra-coded’ or I-VOP, 0b01 for a ’forward predicted’
or P-VOP, 0b10 for a ’bi-directionally coded’ or B-VOP, 0b11
for a ’Sprite’ [11], [14]. In practice only I-VOPs and P-VOPs
(see Sec.4.E) are encountered in mobile phone video. At 32
bits 0x000001B6 forms a reliable header and if a distinction
is made between I-VOPs and P-VOPs 34 bits are available.

4) AAC Audio: Stored samples consist of raw AAC data
streams. A raw data stream consists of a number of syntactic
elements [12]. For example, a Single-Channel-Element (SCE,
code 0b000) is a mono stream and a Channel-Pair-Element
(CPE, code 0b001) is a two-channel stream. A Fill Element
(FIL, code 0b110) is used to pad-out a data block. In a handset
the raw data stream is most likely to be either mono or stereo
and therefore start with an SCE or CPE respectively. We
shall give an SCE example here. The SCE has an internal
structure that defines parameters and contains the audio data.
The structure of a frame header [12] is shown in Fig. 11. The
frame is byte aligned and has the following fields: Element-
code, 3 bits; Element Instance Tag (EIT), 4 bits; Global-
Gain (GG), 8 bits; Reserved (R), 1 bit = 0; Window-Sequence
(WSeq), 2 bits; Window-Shape (WS), 1 bit; Noof-Scale-Factor-
Bands (Max-SFB), 4 or 6 bits; Scale-Factor-Grouping (SFG),
7 bits. This is followed by the audio payload data. The EIT
demarks specific instances of a syntactic element.

The most reliable bits for forming tags are: SCE = 0b000,
for the first SCE in the sample EIT will be 0b0000, and R=0
making 8 bits. From observation: WSeq = 0b10; WS = 0;
Max-SFB is 4 or 6 bits depending on the value of WSeq,
in this case Max-SFB is 4 bits (0b1111); SFG = 0b0101101
making 22 reliable bits in all. GG can vary from one sample to
another within a video and from video to video. The AAC raw
data streams are likely to also contain a number of syntactic
FIL elements. The string of FIL elements begins with the
identification 0b110 and a number of FIL elements follow. The
FIL element is the bit string 0b1001 0110. This bit pattern
is another reliable indication of the presence of AAC data.
As the FIL element is not purposely byte-aligned the bytes:
0x9696... or 0x2D2D..., etc. can be observed at the end of an
audio sample.

C. moov Atom Sub-Atoms

1) Sample Tables: Within the moov atom there are three
atoms that enumerate the offsets of the video and audio
samples: the ”sample-size table”, stsz; the ”sample-to-chunk

9A Video Object Plane is a plane on which video objects are displayed. On
handsets a frame fills the entire VOP, so ”VOP” and ”frame” are synonymous.

Fig. 12. Portion of tables stsz, stsc and stco for video track: size (blue),
name (yellow), version (grey), sample-size (purple), entry-count (green), table
entries (brown). ’chunk-number jump’, see text, (red font)

table”, stsc; and the ”chunk-offset table”, stco. The video
and audio tracks have one set each. stsz contains the size
of each sample in the audio and video tracks respectively
in the file. stsc enumerates how many samples are in
each chunk. stco gives the offset of each chunk from the
beginning of the file. Figs. 12 and 13 provide examples of
these atoms for video and audio respectively. All the field
sizes in these atoms are four bytes each. The fields in stsz
are: atom-sizenameversionsample-sizeentry-countsize. Where
”” indicates a field and ”” indicates that the field or group of
fields is repeated to the end of the table. If sample-size = 0 then
the table consists of entry-count entries of the respective size;
whereas if sample-size 6= 0, the table is compact and translates
as entry-count entries each of sample-size. The fields in stsc
are: atom-sizenameversionentry-countchunk-numbersamples-
per-chunksample-description-index. The sample-description-
index enables different chunks to be played with different
codec parameters, and can be disregarded here. The fields in
stco are: atom-sizenameversionentry-countchunk-offset.

a) Video Sample Tables: The three tables that enumerate
the offsets of the video samples are shown in Fig. 12. From
the stsz video atom it can be seen that the table consists of
0x01CD = 461 entries and the video samples are of sizes (in
bytes): 0x020E = 526, 0xA1 = 161, 0x0211 = 529 and so on
to the end of the table. The total size of the video track is the
sum of all of the sample sizes in the stsz video atom. From
the stsc video atom it can be seen that the table consists
of 0x09 = 9 entries. The three fields in the first entry are:
chunk-number = 0x01 = 1, samples- per-chunk = 0x10 = 16,
sample-description-index = 0x01 = 1. This table is compact
and it can be seen that chunk-number jumps from 4 to 12
in the table (red font in Fig 12). This is a compact way of
representing the fact that chunk-numbers 5-11 are the same as
chunk-number 4. Only chunks that are different to the previous
chunk are entered in the table; thus chunk 12 is different to
chunk 11. From the stco video atom it can be seen that
the table consists of 0x1F = 31 entries and that the offsets of
the first three video chunks are: 0x0620 = 1,568, 0x2B27 =
11,047, 0x4F9B = 20,379. The offset of the first video chunk
is also the offset of the first video sample in Fig. 8. From
the stsc and stsz atoms, the first video chunk contains 16
samples, of which the sum of the sizes is 7,943 bytes.

b) Audio Sample Tables: The three tables that enumerate
the offsets of the audio samples are shown in Fig. 13. The
tables have been compacted where possible. This is frequently
the case with the audio track as many of the audio samples and



SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 2, NO. 1, JUNE 2008 ISSN# 1941-6164 7

Fig. 13. Portion of tables stsz, stsc and stco for audio track: size (blue),
name (yellow), version (grey), sample-size (purple), entry-count (green) and
table entries (brown)

Fig. 14. stsd, s263 and d263 atoms for H.263 video: size (blue), name
(yellow), data-entries (brown): width & height (red font), frame-count (blue
font), vendor (green font)

chunks will be the same size. The stsz audio atom is compact
and is read as 0x0184 = 388 samples each of size 0x80 = 128
bytes. The total size of the audio track is the sum of all of the
sample sizes in the stsz audio atom. The stsc audio atom
has only two entries. First entry: chunk-number = 0x01 = 1,
samples-per-chunk = 0x0C = 12, sample-description-index =
0x01 = 1. Second Entry: chunk-number = 0x21 = 33, samples-
per-chunk = 0x04 = 4, sample-description-index = 0x01 = 1.
The last audio chunk (No. 33) thus has only 4 samples all the
other 32 chunks have 12 samples each. From the stco audio
atom the table consists of 0x21 = 33 entries. The offsets of
the first three audio chunks are: 0x20 = 32, 0x2527 = 9,511,
0x499B = 18,843. The offset of the first audio chunk is also
the offset of the first audio sample in Fig. 10 and the first
audio chunk is the very first chunk in the file. From the stsc
and stsz atoms, the first audio chunk contains 12 samples,
each of size 128 bytes. The size of the first audio chunk is,
therefore, 1,536 bytes.

2) Sample Description Atom (stsd): Detailed information
on the codec and coding parameters are given by the stsd
atom [6], [7]. The stsd atom contains the ”coding-name”
atom which, in turn, contains an ”extension” atom specific to
the codec used. Some of the parameters contained within the
stsd atom define parameters in the frame headers described
in Sec. 4.B. Coding-name and extension atoms commonly
encountered on handsets will now be described.

a) s263 Atom (Video): In Fig. 14 the coding-name atom
can be seen to be, ”s263” and the extension atom, ”d263”.
”s263” defines the use of H.263 video [5]. The width and
height of the video frame in pixels are 0x0080 = 128, 0x0060
= 96; this is sub-QCIF, predicting the source format in the
video header of Sec. 4.B.1. Frame-count gives the number
of frames per sample: 0x0001 means that each sample-offset
given by the stco and stsz atoms corresponds to a single
frame of video. The vendor is listed as ”noki” (0x6E6F6B69).

b) samr Atom (Audio): In Fig. 15 the coding-name atom
can be seen to be ”samr” and the extension atom ”damr”.
”samr” defines the use of narrow-band AMR [5]. The vendor
is listed as ”noki”, mode-set = 0x0080, frame-count = 0x04.
Each bit in the mode-set byte sets one active codec mode;
bit zero sets mode 0 etc. [5]. Hence 0x0080 sets mode 7; this
agrees with the FT parameter in the AMR header of Sec. 4.B.2.

Fig. 15. stsd, samr and damr atoms for AMR audio: size (blue), name
(yellow), data entries (brown): vendor (green font), mode-set (red font), frame-
count (blue font)

Fig. 16. stsd and mp4v atoms for MPEG-4 video: atom-size (blue), name
(yellow), data entries (brown): width & height (red font), frame-count (blue
font)

Fig. 17. stsd and mp4a atoms for AAC audio: atom-size (blue), name
(yellow), data entries (brown)

frame-count is the number of AMR frames that constitute one
MPEG-4 audio sample; this is four as observed in Sec. 4.B.2
and Fig. 10.

c) mp4v Atom (video): In Fig. 16 the coding-name atom
can be seen to be ”mp4v”; this defines the use of the MPEG-4
video codec [5]. The extension atom was ”esds” (not shown).
Parameters within the mp4v atom include: width = 0x0160 =
352 & height = 0x0120 = 288 pixels; frame-count = 0x0001.
frame-count is the number of video frames that constitute one
MPEG-4 video sample, this agrees with the observed stored
data file (not shown).

d) mp4a Atom (Audio): From Fig. 17 the coding-name
atom can be seen to be ”mp4a” this defines the use of the
AAC codec [5]. The extension atom was ”esds” (not shown).

D. Embedded Time Stamp

The MPEG-4 standard has provision for several time stamps
to be embedded in the video file [6]. There are several
creation times and the same number of modification times
enabling different components of the overall presentation to
have different time stamps (e.g. the video and audio tracks).
The provision is usually carried over to 3gp video encountered
on handsets (Motorola and Samsung handsets are notable
exceptions). 3gp has only one video and one audio track [5]
and this gives rise to five creation and five modification time
stamps (all ten time stamps often are the same value). These
time stamps are located within the movie header (mvhd), track
header (tkhd) and media header (mdhd) atoms. Each atom
has a 4-byte name preceded by a 4-byte size. The time stamp
is a 4-byte integer representing the number of seconds elapsed
since 00:00:00 01.01.1904. The offsets of the time stamps from
the start of the respective atom are: creation-time, 12 bytes and
modification-time, 16 bytes. Fig. 6 shows a pair of time stamps:
0xBBD61852 which translate to: 04:38:42 11/11/2003.



SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 2, NO. 1, JUNE 2008 ISSN# 1941-6164 8

Fig. 18. stss atom: size (blue), name (yellow), version (grey), entry-count
(green) and sync-sample-number (brown)

E. Independent Samples

The majority of the video samples in an MPEG-4/3gp
video cannot be viewed independently as they are merely
instructions to derive the current picture from an earlier
picture [8]. They can, therefore, only be decoded as part of
a sequence of samples. The sequence starts with an intra-
coded sample or I-frame, which can be decoded and dis-
played without the prior decoding of any other samples. The
numbers of the samples that can be decoded as I-frames
are stored as a table in the stss atom (see Fig. 18). The
format of stss is: atom-sizenameversionentry-countsync-
sample-number. sync-sample-number is the number of the
sample that can act as a synchronization point i.e. the I-frame.
A single I-frame, sample number 1, is listed in this example.
Even if only the I-frame is recovered from the mdat atom,
it still can be viewed. Video clips shot on handsets typically
have only one I-frame 10: the first video sample11 . The I-frame
may be considerably larger than the other samples; typically,
˜ 1 to 4 times the size of a normal sample.

V. ENHANCED VIDEO FILE RECOVERY WITH XTRACTOR

The information contained within the moov atom can be
used to guide the extraction of the mdat atom, increasing
the chance of recovering either a complete video clip or a
playable partial video clip. The moov atom contains the offsets
of the video and audio samples within the mdat atom and
these can be used to test whether a sector in the Source File
could be the corresponding page in the video file. A sector
under scrutiny will be called a ”Candidate”. Testing Candidate
sectors is the essence of the Xtractor technique. It has been
found to be particularly valuable when the desired version of
a sector cannot be determined from the Spare Area data, when
files have become interleaved through LSN reuse or when part
of the video file has been overwritten.

A. Overview of Methodology

The extraction sequence consists of the following seven
steps: (i) Build an index of the sectors contained within the
Source File, (ii) locate the first moov atom header in the
Source File, (iii) extract the moov atom by following the
sequence of LSNs, (iv) analyse the moov atom to compute
the offsets of the video & audio samples, (v) calculate, from
the moov atom, the size of the mdat atom and locate an
mdat atom of the correct size, (vi) extract the mdat atom by
following the LSN sequence and testing the Candidate sectors,
(vii) append the moov atom to the mdat atom to obtain the
complete file. Then locate and repeat with the next moov atom
until no more moov atoms are found. A detailed description
of the extraction procedure follows.

10Videos shot on Samsung handsets typically have multiple I-frames.
11Pausing a video during recoding will cause the generation of another

I-frame.

Fig. 19. VT for sectors corresponding to a sequence of LSNs

Fig. 20. Chunk Offsets and A/V type

B. Extraction Procedure

1) Building the Index: Sectors containing ftyp, mdat
and moov atom headers, the mdat size, LSN, status etc. are
indexed against their MI value. Spare Area data will vary from
device to device, for examples see Breeuwsma et al. [4].

2) moov Atom Extraction: To extract a moov atom the
sequence of LSNs is followed, starting from the LSN of the
moov atom header. Where there are multiple sectors with the
same LSN a VT is created as described in Sec. 5.B.3. One MI
value from each row is then selected and the corresponding
sector extracted. The number of sectors occupied by the moov
atom can be calculated from its size and used to terminate
its extraction. It is important in the subsequent extraction of
the mdat atom that the moov atom is intact. The integrity
of a moov atom can be checked by following the hierarchical
atom structure of the moov atom. It is extremely unlikely that a
moov atom whose structure was entirely self-consistent would
not be genuine.

3) The Version Table: In the extraction of an atom, either
mdat or moov, a VT similar to that of Fig. 4 is constructed,
as shown in Fig. 19. Each row in the table contains the MI
values of the sectors with the same LSN, which correspond to
a single page in the atom being extracted. The required LSNs
are searched for in the direction of increasing memory address.
The rows, therefore, should be in chronological order from
left to right (Sec. 2.B.4). To extract the sectors for a single
version of an atom one MI value from each row is selected.
Selection criteria can include physical memory location (e.g.
highest memory address), sector status etc. or combinations
thereof. As with the VT for the FAT volume rebuild in Sec.
3.B.1 the manual choice option allows individual sectors to be
chosen.

4) Computing the Sample Offsets: For the example video
file in Sec. 4: Fig. 20 shows the chunks from the stco video
and audio atoms placed in order of their respective offsets,
along with their Audio/Video (A/V) type.

Within each chunk the offsets of the individual samples can



SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 2, NO. 1, JUNE 2008 ISSN# 1941-6164 9

Fig. 21. Sample Offsets, Audio

Fig. 22. Sample Offsets, Video

be computed by adding the sample sizes (from the respective
stsz atom) to the chunk offset. The offset of the first audio
chunk is 32. The sample offsets for the first audio chunk are
given in Fig. 21. The first two of these sample offsets can be
confirmed in Fig. 10.

The offset of the first video chunk is 1,568. The sample
offsets for the first video chunk are given in Fig. 22. The first
three of these sample offsets can be confirmed in Fig. 8.

Combining Figures 20, 21 & 22 the sample offsets can be
placed in order, as shown in Fig. 23. The offset and A/V
type for every sample in the video file to be extracted has
been determined from its moov atom alone (the video codec
performs this computation on playing a video). Essential to
the Xtractor methodology are the computation of the page in
the extracted file that contains the sample and the computation
of the offset of the sample from the beginning of that page
(the Page Offset). This ”Page and Offset Table” can be derived
from Fig. 23 and is shown in Fig. 24.

5) Locating the Corresponding mdat and ftyp Atom
Headers: The size of the mdat atom as determined by the
moov atom can be calculated by adding the sizes of the video
and audio tracks (Sec. 4.C.1). In the original video clip this
would be equal to the stated mdat size shown in Fig. 5. By
comparing the mdat size calculated from the moov atom to
those in the respective mdat headers in the Source File, the
corresponding mdat header and adjacent ftyp header can
be found. As the mdat size is essentially a random number
(between say ˜5k and ˜1M), the probability that two unrelated
video clips will have exactly the same mdat size is very small.

6) Enhanced mdat Atom Extraction: For each matching
mdat header in the Source File a VT is constructed (Sec.
5.B.3). In the mdat case, however, sectors with the correct
LSN are not accepted automatically for inclusion in the VT;
instead Candidate sectors are checked against the Page and

Fig. 23. Computed Sample Offset Figure, from Figures 20, 21 & 22

Fig. 24. Computed Page and Offset Figure, from Fig. 23 , pertaining to mdat
atom of Fig. 7

Offset Table (Fig. 24) for the presence and location of the
required video or audio tags. This will be called the ”Candidate
Test” (C-Test). The first page to locate is Page 1, containing
the ftyp atom and mdat header. The next page to locate is
Page 2. The first Candidate sector for Page 2 is examined for
the required audio tags at Page Offsets 32, 160, 288 and 416 in
this example. If they don’t match the sector cannot be Page 2
of the original video file and another version of the sector (i.e.
with the same LSN) has to be sought. Subsequent Candidate
sectors for Page 2 are then tested until one passes and is
included in the VT. In every search for Candidates the entire
memory is searched; continuing after a matching Candidate is
found, ensuring that every matching sector version is included
in the VT. When the MI values of all the versions of the sector
have been recorded in the VT, the LSN is then incremented
and the remainder of the pages tested in the same way. Thus
sectors are offered on the basis of their LSN and preferentially
placed in order of physical memory location and LSN but the
Candidate Test can veto any sector. If a successful Candidate
with the desired LSN is not found in the entire Source File then
the LSN is repeatedly incremented and the memory searched
until all matching sectors are located or the (pre-discovered)
highest LSN is reached. The number of pages occupied by an
individual mdat atom can be calculated from its size and used
to terminate the extraction of the mdat atom. If the highest
LSN in the Source File was reached before all the pages were
located then the search would be terminated. The remainder of
the mdat atom in the extracted file would be padded with nulls
to preserve the offset of the moov atom (the recovered portion



SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 2, NO. 1, JUNE 2008 ISSN# 1941-6164 10

Fig. 25. Page and Offset Table computed from moov atom (used in
subsequent extraction of mdat atom with initial MI = 3845)

of the video file would still be expected to play). Extraction
of an individual mdat atom is completed by selecting one MI
value from each row and extracting the corresponding sector.
As with the moov atom, selection criteria can be applied to the
MI values for the mdat atom. After a moov/mdat atom pair
has been successfully extracted, the moov atom is appended
to the mdat atom to create the complete video file.

VI. RESULTS AND DISCUSSION

A. FAT (Nokia 6230)

A map of a FAT volume, from a Nokia 6230, rebuilt
according to the method of Sec. 3 was shown in Fig. 1.
An examination of the recovered directory structure reveled
that there were three deleted entries for videos at a time of
interest. The SCs had been overwritten in the directory and
thus the sectors containing any video footage and their cluster
chains that might have still existed were dissociated from the
directory. A search for lost cluster chains reveled one that led
to the recovery of a deleted video. The size of the recovered
file was exactly the same as the file size in one of the directory
entries and the time stamp embedded in the file was a few
seconds earlier than the time stamp in the directory entry.
We have observed (on the Nokia 6230, for example) that the
embedded time-stamp (Sec. 4.D) is created when recording
begins and the directory time stamp is created when recording
ends. It was therefore concluded that the recovered video
was most likely to be the one listed in the directory. As the
definitive SC link has been lost, caution must be exercised in
reporting such results evidentially; the time-stamp embedded
in the video, however, remains unambiguous.

B. Xtractor

1) Nokia 6230 Example: The Xtractor method was used on
the Source File from Sec. 6.A. The handset had H.263 video
and AMR audio (see Sections 4.B & 4.C.2). The same deleted
video recovered from the lost cluster chain was recovered
again and another deleted video was recovered also. A size
and time-stamp comparison led to the conclusion that it was
most likely one of the other videos listed in the directory.
Details of the extraction of the second video follow. From the
moov atom the Page and Offset Table shown in Fig. 25 was
computed.

From Fig. 25 it can be seen that the first chunk is from the
video track and that Page 1 has two video tags at Page Offsets
of 40 and 370. Page 2 has two video tags at 53 and 360, and so
on for the other pages. The first video sample was the I-frame

Fig. 26. C-Test results for extraction of mdat atom from deleted video
(initial MI = 3845)

Fig. 27. First 16 bytes of sector with LSN = 5837: MI = 9303, expected
video tag absent (a); MI = 9306, expected video tag present (b)

(Sec. 4.E), of size 330 bytes 12. Page 58 has one video tag and
one audio tag and is the start of the first audio chunk. Pages
59 and 60 have four audio tags each at Page Offsets of 38,
166, 294 and 422. The mdat size, calculated from the moov
atom, was 40,326 bytes. Only one mdat atom with that size
was found: at MI = 3845. This sector forms the first page of
the mdat and the extraction proceeded from its LSN (5799),
following the sequence of LSNs and testing each Candidate
page. The results from the C-Test are shown in Fig. 26.

For Page 2, LSN = 5800 was searched for. The first
Candidate, found (at MI = 7286), failed because the expected
video sample tag for this page was absent. The Candidate
sector, therefore, could not have been part of the original
video file and was rejected. The search continued for another
Candidate for Page 2, i.e. the next sector with LSN = 5800;
this was found at MI = 7289. This sector also failed and the
search continued. A third Candidate for Page 2 was found at
MI = 7292 this sector passed and its MI value was written
to the VT for Page 2. No more Candidates were found for
Page 2. The remaining pages in the file were searched for
a similar manner. In extracting the file, 112 Candidate pages
were rejected. The resulting video clip contained a 78-page
mdat atom and could be played normally on QuickTime 7.
For Page 39, a video tag with a Page Offset of 9 (see Fig. 25)
in a sector with LSN = 5837 (see Fig. 26) was required. The
first 16 bytes of each of the two Candidate sectors are shown
in Fig. 27. The required video tag is clearly missing in (a) and
present in (b). The distribution of the pages of the video file
throughout the memory space is apparent from the spread of
their MI values in Fig. 26.

It can be seen from Fig. 26 that where there are multiple
candidates, the sector which ultimately proves to be the correct
sector can be found at the higher memory address. We have
found that this is likely to be the case; but not always, as shown

12This is very small for an I-frame and is because the start of this video
was shot in the dark.



SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 2, NO. 1, JUNE 2008 ISSN# 1941-6164 11

Fig. 28. Page and Offset Table for a video clip with multi-page I-frame

in Sec. 6.B.5. Statistically, therefore, the physical location of
the sector can be a useful discriminator. For this deleted video
file, Fig. 26 shows that there existed two sectors (candidates
for Page 58), one with deleted status that proved to be the
correct sector and another sector with valid status that proved
to be erroneous. The sector status can therefore be a useful
sector discriminator. It can be seen from Fig. 25 that the audio
tag Page Offsets have a regular structure, this is because the
audio samples have a fixed size. Such regular structures will
occur within a video file and similarities may exist between
the sectors of different video files13 . Such pages cannot be
discriminated by Candidate Testing, and may reduce the effec-
tiveness of the method. However, only similarly tagged sectors
that also have the same LSN will be affected and these will
lead to additional entries in the VT. Subsequent discrimination
may still be achieved by considering physical memory address
and sector status. All the remaining results in this section are
from Nokia 7600 handsets (sw. ver. 04.05), with Samsung
KEE00D00CM NAND Flash chips. All resulting videos were
playable with Apple QuickTime 7.

2) Effect of Large I-frame: Fig. 28 shows the Page and
Offset Table for a video file with an I-frame (Sec. 4.E.) that
started on Page 4 at Page Offset 32. The size of the I-frame was
1,956 bytes so it continues on Pages 5, 6 and 7. Consequently
Pages 5 and 6 contain no tags at all. This complete absence
of any tags can also be tested.

3) Interleaved Sector Example: Fig. 29 shows the C-Test
results from the extraction of a video that had its sectors
interleaved with those of another file or files (Sec. 2.B.3). The
extraction proceeded for Pages 1 to 44 as described in Sec.
6.B.1. Page 44 had LSN = 6574, thus Page 45 was expected to
have LSN = 6575. A successful candidate was not found in the
file with this LSN so the next incremental LSN was searched
for repeatedly until LSN = 6931 was found; this page passed
and was included in the VT. Thus 355 sectors were skipped
before the file was picked up again. The resulting video had an
mdat size of 1,796,120 bytes and could be played normally.

4) Partial File Example: Fig. 30 is from an extraction of a
deleted video that had been partially overwritten. From Page 1
to Page 111 (with LSN = 24889) the extraction was successful,
but no matching sectors for subsequent pages were found. The
end of the mdat atom was, therefore, padded with nulls to
preserve the offset of the moov atom. The recovered portion
of the video could be played normally.

13Particularly for videos shot on the same handset that have an audio chunk
first; these will have the same ftyp atom size placing the audio samples at
the same offsets. Subsequent video chunks are unaffected.

Fig. 29. Results from C-Test for extant mdat atom with interleaved sectors

Fig. 30. Results from C-Test for deleted video with partially overwritten
mdat atom

Fig. 31. Two sectors with same LSN, correct sector at the lower memory
address

Fig. 32. Still made from I-frame taken from handset video

5) Sector Order: Fig. 31 is from a C-Test for a deleted
video. Both Candidate sectors were from the same memory
block. The sector that proved to be the correct sector was
to be found at the lower memory address (lower MI value)
contrary to the observation in Sec. 6.B.1.

C. Single I-Frame Example

The Xtractor method is capable of recovering video files
that have been partially overwritten. In cases where the mdat
atom has been severely corrupted and only the I-frame has
been recovered it may still be viewable. An example of a still
made from the single I-frame is shown in Fig. 32. The video
file containing this I-frame consisted of the ftyp atom, the
moov atom and the mdat atom containing one sample: the
I-frame. The rest of the mdat atom was padded with nulls.
The video could be played normally (albeit a still frame) on
QuickTime 7. The size of the sample making up the I-frame
was 1,238 bytes and would, therefore, fit into a single typical
cluster (2k bytes).



SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 2, NO. 1, JUNE 2008 ISSN# 1941-6164 12

Fig. 33. Stills made from video: with I-frame removed (a) & (b), with
I-frame intact (c) & (d)

D. Missing I-Frame Example

As 3gp video normally has only a single I-frame it might
be expected that if the I-frame was missing or corrupted
then the remainder of the extracted segment could not be
viewed. However, if the stss atom is edited such that its
synchronization point is the number of the first video sample
recovered 14 then the video segment can be expected to play.
Fig. 33 shows stills from a video that has had its I-frame
replaced with nulls and the synchronization point set to sample
number 2. A bus was allowed to pass the field of view,
refreshing the scene 15 (panning the camera has the same
effect). Fig. 33 (a) is an early frame and is severely corrupted;
Fig. 33 (b) is a frame from after a bus has passed, showing
apparent full recovery. The original video is shown in Fig 33
(c) and (d) for comparison.

E. Extraction Probabilities

The moov atom of Fig. 6 occupied 11 sectors and the
mdat atom of Fig. 5 occupied 569 sectors. In a well-used
handset, the probability of all 580 sectors being in a continuous
sequence of LSNs would be quite low. As the size of the
moov atom is less than 1/52nd of the size of the whole video,
the probability of the moov atom existing as a continuous
sequence of LSNs is much greater than that of the whole video.
Once an intact moov atom has been recovered the probability
of recovering a viewable video increases significantly. Video
samples are often of the order of 512 bytes, and audio samples
are typically 128 bytes (AMR) or 743 bytes (AAC). It is
therefore likely that a video or audio sample tag will appear
on most 512-byte pages in a video file. The probability of
a 34-bit H.263 tag occurring by chance alone at a specific
place in any sector is: 1:234 ≈ 6x10−11. In a 32M byte file
there would be 64k 512-byte sectors and we would expect
one false positive in ˜260,000 handset examinations. In reality

14The sample number can be computed from its offset as in Sec. 5.B.4.
15As a scene changes, previously un-encoded material has to be introduced;

for example in the form of intra-coded macro blocks. As the video progresses,
there may be enough new material that the whole scene is represented.

the data in the Source File is not completely uncorrelated,
having a high occurrence of runs of zeros and identical tags
from different videos, this does increase the chance of a
false positive. However, the probability of rejecting erroneous
sectors has been found to be sufficiently high to form the basis
of a usable discrimination technique. The probability of a false
positive can be reduced by marking in the Master Index as
unavailable, sectors that are already known to belong to other
files. Files extracted from the Source File using Xtractor can
also be excluded subsequently, thus iteratively increasing the
chance of recovering heavily fragmented video files.

VII. CONCLUSION

We suggest that an integrated approach to recovering files
from handset memory dumps would be beneficial. This can
include rebuilding the FAT volume, using Version Tables to
catalogue sectors with the same LSN, recovering lost cluster
chains and using the sector status and the sector’s physical
location. In the case of MPEG-4/3gp video files additional
methods can be employed. For every video and audio sample
the Xtractor method can determine, from the moov atom
alone, which page in the original file the sample was on
and its Page Offset. By comparing the samples on Candidate
sectors with their expected type and position, it is possible to
reject erroneous sectors and greatly increase the probability
of extracting a viewable video. In cases where deleted files
have become interleaved Xtractor can skip over the erroneous
sectors, resuming the extraction when the desired file is located
again. As each page can be verified independently partial
videos can be extracted successfully. Videos consisting of the
single I-frame are still viewable and videos in which the I-
frame is missing or corrupted may still be viewable also.
Complete and partial videos recovered by the Xtractor method
can be played on readily available video playback software
(e.g. Apple QuickTime 7).

REFERENCES

[1] E. Casey (ed.), Digital Evidence and Computer Crime, 2nd ed. Elsevier
Academic Press, 2004.

[2] J. Mintel (ed.), Upgrading and Repairing PCs, 10th ed., Que, 1998.
[3] Internet address: beginningtoseethelight.org/fat16/index.php, [first ac-

cessed 3rd May 2006].
[4] M. Breeuwsma et al., Forensic Data Recovery from Flash Memory, Small

Scale Digital Forensics J. Vol. 1(1), June 2007.
[5] 3rd Generation Partnership Project; Technical Specification Group Ser-

vices and System Aspects Transparent end-to-end packet switched stream-
ing service (PSS); 3GPP file format (3GPP) 3GPP TS 26.244 V6.5.0
(2006-06).

[6] Information technology - Coding of audio-visual objects - Pt.12: ISO base
media format, Ref. No. ISO/IEC 14496-12:2005/Cor.1:2005(E).

[7] Information technology - Coding of audio-visual objects - Pt.14: MP4
file format, Ref. No. ISO/IEC 14496-14:2003(E).

[8] F. Pereira & T. Ebrahimi (eds.), The MPEG-4 Book, Prentice Hall IMSC
multimedia series, 2002.

[9] Video coding for low bit rate communication ITU-T H.263, 01/2005.
[10] J. Sjoberg et al., Real-Time Transport Protocol (RTP) Payload Format

and File Storage Format for the Adaptive Multi-Rate (AMR) and Adaptive
Multi-Rate Wideband (AMR-WB) Audio Codecs, IETF RFC 3267, June
2002.

[11] Information technology - Coding of audio-visual objects - Pt.2: Visual,
Ref. No. ISO/IEC 14496-2:2004(E).

[12] Information technology - Generic coding of moving pictures and associ-
ated audio information - Pt.7: Advanced Audio Coding (AAC), Ref. No.
ISO/IEC 13818-7:2006(E).



SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 2, NO. 1, JUNE 2008 ISSN# 1941-6164 13

[13] 3rd Generation Partnership Project; Technical Specification Group
Services and System Aspects; Mandatory speech codec speech processing
functions; Adaptive Multi-Rate (AMR) speech codec frame structure,
3GPP TS 26.101 V7.0.0 (2007-06).

[14] R. van der Knijff, 10 Good Reasons Why You Should Shift
Focus to Small Scale Digital Device Forensics, Available at
http://WWW.dfws.org/2007/procedings/vanderknijff pres.pdf, [first ac-
cessed 20th Feb. 2008].

James Luck James Luck is a Forensic Engineer in the Metropolitan Police,
Forensic Digital Evidence Unit at New Scotland Yard. He gained his PhD in
Electrical Engineering from Kings College London in 1996. He currently leads
the research activity in the recovery and understanding of data from embedded
systems. James is a member of the IET, the IEEE and the Institute of Physics.
He has given expert testimony on digital evidence in several criminal trials.

Mark Stokes Mark Stokes is head of the Metropolitan Police, Forensic Digital
Evidence Unit at New Scotland Yard. He has worked in the area of forensic
electronic engineering for over 20 years, with the past 12 years dedicated
to telecommunications and embedded systems. His current research interests
include the recovery of data from embedded systems and cell site analysis.
Mark is a member of the IET. He has given expert testimony on digital
evidence in numerous criminal trials.


