
SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL VOL. 4, NO.1, SEPTEMBER 2010, ISSN# 1941-6164 1

Android Forensics:
Simplifying Cell Phone Examinations

 Jeff Lessard Gary C. Kessler
 Champlain College Gary Kessler Associates
 j.lessard802@gmail.com Edith Cowan University

 gck@garykessler.net

Authors' Note

This paper was initially written during the fall of 2009 and since that
time, several new versions of Android OS have been available to
customers via upgrades or new phone purchases. With each new phone
and firmware update, there are initial challenges to the forensic
community; the fundamentals of acquiring and analyzing an image,
however, have remained the same.

Introduction

 It is hardly appropriate to call the devices many use to
receive the occasional phone call a telephone any more. The
capability of these devices is growing, as is the number of
people utilizing them. By the end of 2009, 46.3% of mobile
phones in use in the United States were reported to be smart
phones (AdMob, 2010).
 With the increased availability of these powerful
devices, there is also a potential increase for criminals to use
this technology as well. Criminals could use smart phones for a
number of activities such as committing fraud over e-mail,
harassment through text messages, trafficking of child
pornography, communications related to narcotics, etc. The
data stored on smart phones could be extremely useful to
analysts through the course of an investigation. Indeed, mobile
devices are already showing themselves to have a large volume
of probative information that is linked to an individual with just
basic call history, contact, and text message data; smart phones
contain even more useful information, such as e-mail, browser
history, and chat logs. Mobile devices probably have more
probative information that can be linked to an individual per
byte examined than most computers -- and this data is harder to
acquire in a forensically proper fashion.
 Part of the problem lies in the plethora of cell phones
available today and a general lack of hardware, software, and/or
interface standardization within the industry. These differences
range from the media on which data is stored and the file
system to the operating system and the effectiveness of certain
tools. Even different model cell phones made by the same
manufacture may require different data cables and software to
access the phone's information.

 The good news is there are numerous people in the
field working on making smart phone forensics easier. Already
there is material available on how to conduct an examination on
Blackberry phones and a growing number of resources about
the iPhone. However, there is a new smart phone OS on the
market named Android and it will likely gain in appeal and
market share over the next year. While Android initially
launched with only one phone on T-Mobile, phones are now
available on Sprint, Verizon and AT&T as well.

Introduction to Android

 Android is an operating system (OS) developed by the
Open Handset Alliance (OHA). The Alliance is a coalition of
more than 50 mobile technology companies ranging from
handset manufactures and service providers to semiconductor
manufacturers and software developers, including Acer, ARM,
Google, eBay, HTC, Intel, LG Electronics, Qualcomm, Sprint,
and T-Mobile. The stated goal of the OHA is to "accelerate
innovation in mobile and offer consumers a richer, less
expensive, and better mobile experience" (OHA, 2009, n.p.).

Figure 1. Android architecture (Android.com, 2009b).

 The basic architecture of Android is shown in Figure
1. At its core, Android OS builds are based on the Linux 2.6
kernel. When running on a hard drive, the Linux system device

defaults to the first physical hard drive, or /dev/hd0. In

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL VOL. 4, NO.1, SEPTEMBER 2010, ISSN# 1941-6164 2

addition, Linux only understands character and block devices,
such as keyboards and disk drives, respectively. With Linux on
flash, however, a Flash Transition layer provides the system
device functionality. A Memory Technology Device (MTD) is
needed to provide an interface between the Linux OS and the
physical flash device because flash memory devices are not
seen as character or block devices (Dedekind, 2009).
 The Android Runtime System utilizes the Dalvik
virtual machine (VM), which allows multiple applications to be
run concurrently as each application is its own separate VM.
Android applications (the apps of today's common parlance)
are compiled into Dalvik executable (.dex) files
(DalvikVM.com, 2008). During a forensic examination one
will be mainly concerned with the Libraries and, in particular,
the SQLite databases. This is where one will find the majority
of data that could be of interest in an investigation. Files can be
stored on either the device's storage or on the removable secure
digital (SD) memory card (Android.com, 2009b).
 Unlike the typical desktop operating system, data or
other files created by one Android app cannot automatically be
viewed by other applications by default. The VM nature of
Android allows each application to run its own process.
Security is permissions-based and attached at the process level
by assigning user and group identifiers to the applications.
Application cannot interfere with each other without being
given the explicit permissions to do so (Android.com, 2009a).
 The security mechanisms of the Android OS could
impede a forensic examination although some of the basic tools
and techniques could allow investigators to recover data from
the device. The first, most obvious step is to perform a
traditional forensics analysis of the microSD card from the
phone. This is the least effective method as it can only is access
the data that apps directly store on the SD card. SD cards use
the FAT32 file system and are easily imaged and examined
using traditional forensics tools (including write-blocking
hardware) (TalkForensics, 2009).
 The Android file system is Yet Another Flash File
System 2 (YAFFS2). YAFFS, developed in 2002, was the first
file system designed for NAND (Not-AND) flash memory
devices. YAFFS2 was designed in 2004 in response to the
availability of larger sized NAND flash devices; older chips
support a 512 byte page size whereas newer NAND memory
has 2096 byte pages. YAFFS2 is backward compatible with
YAFFS (Manning, 2002).

Acquiring a Physical Image of an Android Device

 Since Android is still an emerging OS and, forensics is
in its infancy, this section will explore the steps of the analysis
of an Android device. The following methods were assembled
from research done and methods created by the
android/htcmodding community as well as assistance from
Andrew Hoog and ViaForensics.

Figure 2. Sprint HTC Hero (left) and information screen of test
device (right).

 As of July 2010, the latest version of Android
available was v2.2 (Froyo) and v3.0 (Gingerbread) is expected
before the end of the year. The analysis described below was
performed during the fall of 2009 on a Sprint HTC Hero
running Android v1.5 (aka Cupcake) (Figure 2). The Hero is a
little different than a standard Android phone because HTC
employs its own Sense user interface (UI) on the device, which
will not be used on any Google-branded devices (HTC, 2009;
Miller, 2009). While the Sense UI changes the look and feel of
the device, it is uncertain how much (if any) this impacts a
forensic investigation of the HTC Hero.

Connecting the device via a data cable

 Although the data cable for the Hero is a proprietary
HTC cable (ExtUSB), an ordinary mini-USB cable will work
for data transfers. The HTC cable handles running music and
video over USB and would be desired for consumer
applications but is not required for any type of forensics
analysis.

Imaging the memory card

 Although an analysis of the removable memory of the
phone has its limitation and phone system data is likely not
stored to the memory card, it can still be a valuable tool.
Making an image from the phone's memory card is quite simple
and normal procedures for imaging a device can be used. In the
analysis here, AccessData's FTK Imager v2.5.1 was employed.
 The phone first needs to be connected to the
examination machine using a write blocker to ensure the
integrity of the data. Once the phone is connected, it will
prompt that the USB cable is connected and ask the user to
select to copy files to/from the host computer. Another screen
then appears asking the user to mount the device (Figure 3).

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL VOL. 4, NO.1, SEPTEMBER 2010, ISSN# 1941-6164 3

Figure 3. "USB Connected" screen.

 Once connected, the device will look for any
necessary appropriate drivers. If issues arise, drivers are made
available on HTC's website.

 Now in FTK Imager, go to the File pulldown menu,
and select the Add Evidence open, and then choose Physical
Drive. Select the drive that is appropriate to the Android device
(Figure 4). Note that the device will be the same size as the
memory card (in this case, there is an 8GB microSD card in the
device.

Figure 4. FTK Imager "Drive Selection" screen.

 Save the image by using the File, Export disk image
option. Make sure to take a physical image of the entire drive
rather than a logical image of the partition. In this case,
\\PHYSICALDRIVE5 was selected and imaged, sending the
output to a raw dd image file. (The rationale for using dd for
image files is provided below.) As with any image file, be sure
to verify the hash prior to any subsequent analysis (Figure 5).
Note that the SD card should be put aside and not replaced in
the phone.

Figure 5. FTK Imager image summary screen.

Importance of rooting the device in order to obtain a dd

image

 The ability to physically image memory is the holy
grail of mobile device forensics. The device's memory can
contain extremely valuable data, such as: the contact list, call
logs, text messages, and other phone data. Additional
information can also be hidden and uncovered, such as Web
history, e-mails, images viewed on the phone, passwords, and
fragments of other data. Access to memory can be
accomplished by rooting the phone.
 While the term rooting can have a negative
connotation (similar to jailbreaking an iPhone), it has a
different meaning than is generally perceived. Rooting a device

merely means to gain access to the root directory (/) and
having the appropriate permissions to take root actions. The
modding community -- i.e., modern day hackers (in the 1970s
sense of the word) who like to modify devices beyond the
intentions of the device designers or vendors -- uses the term to
mean accessing the root directory/permissions and then
substantially modifying the phone to increase battery life or
performance, run homebrewed applications, and/or install
custom firmware on the phone (Purdy, 2009). Obviously,
changing the data in such a way is not forensically sound and
would not be done in an investigation.
 Obtaining a dd image file is possible when the
permissions are altered to gain access to the root directory. It is
important to note that this method (at least for the Sprint HTC
Hero), in its current iteration, needs to have a third party
program installed on the device in order to get root permissions
and likely would not be admissible in a court room setting.
There are different ways to gain root permissions on other
devices that do not involve adding anything to the phone but
this is not the case on the Hero. The following method, then,
should be viewed more of a proof of concept that could be
tailored to be forensically sound if an alternate way to obtain
root is found.

USB Debugging

In order to acquire access to the root directory,
Universal Serial Bus (USB) debugging will have to be enabled
on the phone. Although the default setting is “disabled,” going
to Settings, selecting Applications, choosing Development and
touching the checkbox, can turn on this function.

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL VOL. 4, NO.1, SEPTEMBER 2010, ISSN# 1941-6164 4

Root access will not be possible if an examiner
encounters a locked Android device that does not have USB
debugging enabled. If presented with a locked device, one may
either attempt the method and hope that USB debugging is
currently enabled by the user or must defeat the lock screen by
some other method and then enable debugging using the
outlined method above.

Preparing the Hero for rooting

 The method described here is based upon descriptions
at The Unlockr.com (2009) and is the result of the work of
many users at the XDA Developers forum (forum.xda-

developers.com/). The Android root access software was
created by Christopher Lais at ZenThought.org. Be sure to
insert a fresh SD card in the phone (do not replace the original
SD card in the phone as it contains evidence that this process
will alter).
 The first step is to set up the Android Development
Tools (ADT) on the host Linux, MacOS, or Windows computer
system. The ADT is part of the Android Software Development
Kit (SDK) (Android Developers, 2009). For a Windows
system, download the SDK ZIP file and extract the files to the
host computer.
 The next step is to ensure that the phone and the
Android development bridge (ADB) are both functioning as
expected. In the Windows command line, move to the

AndroidSDK folder, navigate to the tools subfolder, and

run the adb devices command. If everything is working
properly, a list of attached devices will show up with a
corresponding serial number (Figure 6). If not presented with a
list of devices, one must check that drivers are functioning
properly and that USB debugging is enabled.

Figure 6. Starting the Android SDK in Windows.

 The method necessary to obtain root is specific to
each phone and OS varient. The following method was
designed for the Sprint HTC Hero running OS version 1.5 and
utilizes a program called AsRoot2 (ZenThought, 2009). The
archive needs to be downloaded and the files extracted the files
to the Tools folder and then execute the following commands

(Figure 7):

> adb push asroot2 /data/local/

> adb shell chmod 0755

/data/local/asroot2

> adb shell

$ /data/local/asroot2 /system/bin/sh

mount -o remount,rw -t yaffs2

/dev/block/mtdblock3 /system

cd /system/bin

cat sh>su

chmod 4755 su

Figure 7. Obtaining root access of the Android device in
Windows.

 If these steps all work correctly, the examiner should
now have root permissions and can image the Android device.
It should be noted that there is no real indicator that root access
is available; to test out if it is functioning properly, continue
and try to make a dd image of the memory (per the instructions
below).

Creating a dd image of memory

 The file system of the Android device is stored in a

few different places within /dev. Without the use of a
traditional hard drive, the Linux kernel makes use of an MTD
that allows for the embedded OS running directly on flash (SSI
Embedded Systems, 2008). Although it may differ for other
android phones, there are six files of interest located in

/dev/mtd/ (Android-DLs.com, 2009):

• mtd0 handles miscellaneous tasks

• mtd1holds a recovery image

• mtd2 contains the boot partition

• mtd3 contains system files

• mtd4 holds cache

• mtd5 holds user data

 Although it is important to image each file to obtain
the complete operating system, the majority of this examination
will focus on the information in mtd3 and mtd5.

 In order to image memory, the Android SDK shell will
need to again be launched. As before, navigate to the

AndroidSDK\tools directory, start the shell by executing

the adb shell command, and then entering the

/data/local/asroot2 /system/bin/sh instruction.

 Once in the shell, the dd command can be used to
image the memory files, using the command (Hoog, 2009a):

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL VOL. 4, NO.1, SEPTEMBER 2010, ISSN# 1941-6164 5

dd if=/dev/mtd/mtd0 of=/sdcard/mtd0.dd

bs=1024

The command above will make a bit-for-bit image of the mtd0

file, using a block size of 1024 bytes, and copy the image file to
the SD card. Repeat this command five more times in order to
image the remaining five files of interest (Figure 8).

Figure 8. Obtaining root access of the Android device in
Windows.

 Note that this command will direct the output to the
SD card. For this reason, it is imperative that a formatted and
wiped SD card is placed into the phone and that the evidentiary
SD card is put aside. It is also extremely important to not mix

up the input file (if) and output file (of) parameters so as to

not inadvertently destroy any data.
 At this point, the dd files can be analyzed using any
forensics software. Be sure to use a write-blocker when
accessing the files on the SD card.

Examination of Memory

 The examination of the memory image files was
performed using Access Data's Forensic Tool Kit (FTK) v1.81.
FTK was selected because of its data carving and searching
capabilities; since today's forensic software does not mount the
YAFFS2 file system, the ability for string searches was
paramount.
 When setting up the analysis in FTK, select options
for full indexing and data carving, and add all six files for
analysis. In this case, the subject phone was approximately two
months old and had been used extensively for data applications.
After data carving, 207 Hypertext Markup Language (HTML)

and Portable Data Format (PDF) documents were recovered, as
were 12,709 BitMap (BMP), Graphics Interchange Format
(GIF), Joint Photographic Experts Group (JPEG), and Portable
Network Graphics (PNG) images.

Recovered documents

 Most of the recovered documents were not of a real
evidentiary value. A large portion of the HTML files were
advertisements and only four files were complete snapshots of
Web pages (Figure 9, left). The HTML files included 28
Exchangeable Image File (EXIF) data for JPEGs; this
information can be helpful to determine what specific camera
took an image.

Figure 9. Recovered files: Web page (left) and Google search
history (right).

 One particularly interesting document that contained
useful information was the single recovered PDF file. This file
was extremely fragmented and while Acrobat Reader reported
that the file was corrupt and could not be opened, FTK was able
to view the contents. The file was 2 MB in size and was
substantially larger than all of the other recovered documents. It
contained information such as text messages, phone book
information, browser history, Facebook status updates, Google
search history (Figure 9, right), YouTube videos visited, and
music played from the SD card. It was difficult to look through

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL VOL. 4, NO.1, SEPTEMBER 2010, ISSN# 1941-6164 6

because it was so fragmented but searching the document made
information easier to find.

Recovered images

 As on a typical computer, this Android device had
nearly 13,000 images, only some of which would be interesting
in a forensics examination. The first noteworthy images found
were the ones displayed as the phone is booting up. There are
three different images: the HTC logo, a Hero splash screen, and
a Sprint screen. The HTC logo screen is displayed at two points
in the booting process and features the HTC logo in a beveled
silver text on a reflective black background. As the phone
boots, the source of light in the image changes as it pans across
the logo – this seems like a loading screen, indicating
something is happening like a progress bar would. This logo
was merely an animated GIF file.

 The mtd3.dd file contained images for different
applications. Backgrounds for a labyrinth style game; images
for bookmarks, weather, alarm clocks, keyboards, and widgets;
grids for Sudoku games; and icons for check boxes, contacts,
camera, and navigation apps were found.

Figure 10. Recovered images: Corrupted image file (left) and
intact image file (right).

 The mtd4.dd file contains contents of the Android
cache. Recovered images from this location included some that
were viewed from e-mail; some of the images were corrupted
while others were perfectly intact (Figure 10).
 Interestingly, only 30 images from the user's Gmail
account were found. The highly fragmented condition of some
of these images suggests that the amount of space allowed for
caching of images viewed from Gmail is not large.
Alternatively, it is possible that FTK was not able to locate or
identify the images.
 Another interesting result was that two of the images
in the cache, although on the Gmail account, were never
specifically called up or viewed on the phone. The best
explanation is that they were preloaded from viewing the email,
although the user never selected to download or view them.

 The mtd5.dd file contains the user data and, not
surprisingly, is where the majority of the recovered images
were found. These were the types of pictures one would expect
to find, namely images ranging from contact photos, downloads

from browser Web pages, pictures taken with the Hero's camera
and sent to someone via the Multimedia Messaging Service
(MMS) or e-mail to those from applications such as Facebook,
cover art from Pandora, image previews of videos from
SprintTV and YouTube, and icons from applications.

Searching

 While browsing through images and documents
yielded some helpful information, FTK was unable to locate
text messages, e-mails, contacts, and call history. The search
tool is quite powerful but in order to use it, an examiner needs
to have an idea of what to search for. When trying to find
emails, a logical starting point would be to search for the
suspect's e-mail address. A search for j.lessard802@gmail.com,
for example, yielded 1628 hits over 92 files. The files generally
started with the e-mail address, followed by a preview of the
body of the message and then the rest of the e-mail and
recipient information. Many of the strings found looked like
this one:

j.lessard802@gmail.com >..ö7`à..ö7c$Ryan
and Ysa I quite impressed with the talk they
gave our class. Maybe impre....Ryan and
Ysa

I quite impressed with the talk
they gave our class. Maybe impressed isnt
quite the right word for it - perhaps amazed
they let everyone in to their life like that. I
never really thought about the difficulty of
communicating across cultures and how it
would impact a relationship. Specifically if
they didnt speak each others language. I
guess the international language is truly
dance.

 It is likely that if the suspect were using a mobile e-
mail client (such as a gmail application) would yield more
messages than a system where only Web mail has been
employed.

Figure 11. User names and passwords found in plaintext,
blacked out for publication.

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL VOL. 4, NO.1, SEPTEMBER 2010, ISSN# 1941-6164 7

 Hoog (2009b) has reported that the Android browser
stores passwords in plaintext right next to a username and
Uniform Resource Locator (URL). As expected, several of the
search hits found the displayed username and password for
several Web sites, one of which yielded a piece of a database
that held all of the password information (Figure 11). This is
very helpful for the forensic examiner although a poor security
practice from the user perspective. While many people
appropriately worry about saving their username and password
information on their computers, and may even know how to
hide those traces, most are likely less careful with similar data
stored on their phone.
 When searching for e-mail addresses, references were

found to a file named contacts.db. After searching for that
string, contact and phonebook information was found quite
easily. It was located in a few different places and in pieces but
that is likely due to the fact that FTK was unable to recognize
the operating system and, before data carving, everything was
just considered unallocated space. The actual path for the
contacts appears to be
/data/data/com.android.providers.contacts/

databases/contacts.db.

Logical Examination

 Although it is valuable to perform a physical
examination to access deleted information that might otherwise
go unnoticed, much of the data that was viewable in FTK was
fragmented and difficult to read. Looking at files logically can
show whole databases that are not fragmented.

Figure 12. Contents of the /data/data directory.

 Following the naming convention of the path where

contacts.db was found, the Hero was hooked up again to

the examination machine and the directory /data/data was
inspected, and 154 subdirectories were found (Figure 12).
 After the process of browsing each of these folders,
listing the subdirectories and looking for databases, several

valuable files were uncovered. As before, the files were copied

to the SD card using the dd command (Figure 13):

dd if=/data/data/subdir/databases/file.db

of=/sdcard/file.db

Figure 13. dd commands to create images of database (.db)
files.

Figure 14. Username and password of HTC Twitter user.

Figure 15. Information about Twitter sites that the user follows.

 The database files found by a logical examination of
the Android device yielded a significant amount of interesting

information. The first such file examined was /data/data

/com.htc.htctwitter/databases/htcchrip.db,
the database associated with htctwitter, the Twitter application
called Peep, developed by HTC. This database file yielded
account information (including an unencrypted password)
(Figure 14) as well as account information for Twitter sites that
the user follows (Figure 15).
 In addition, 1460 Twitter updates were found, with
detailed information about the sender. This output also contains
a field named is_public, which defines whether the message
was a private (0) or a normal tweet (1).

Figure 17. Passwords found in plaintext.

Figure 18. Data typed into browser forms.

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL VOL. 4, NO.1, SEPTEMBER 2010, ISSN# 1941-6164 8

Figure 19. Browser history.

Figure 20. Browser search history.

 The database file
/data/data/com.android.browser/databases

/browser.db is a separate database for the Android browser.
The contents of this file included usernames, URLs, and
plaintext passwords (Figure 17), data typed into forms (Figure
18), web browser history (Figure 19) and search history
(although it was thought that this information had been deleted)
(Figure 20).
 Another interesting file is the
/data/data/com.android.browser/gears

/geolocation.db, which stores the last known location as

reported by the GPS satelites (Figure 21).

Figure 21. Last known geographic location.

 The Google maps database can be found in
/data/data/com.google.android

.apps.maps/databases/search_history.db. This
file contains the history saved for all searches entered into the
Google maps application (Figure 22).

Figure 22. Google maps database.

Figure 23. Google apps account information.

 The Google applications database is found in
/data/data/com.google.android

.googleapps/databases/accounts.db. This file
contains Google apps account information, including the user
name and the encrypted passwords (Figure 23).

Figure 24. MMS/SMS message information.

 The
/data/data/com.android.providers.telephony

/databases/ directory contains information related to the
messaging applications, including picture and text message

data. The mmssms.db database contains the MMS and Short

Message Service (SMS) messages [Address field truncated]
(Figure 24). Note that the contents in this database included
some deleted messages although no messages that were deleted
more than 45 days prior were available. It is likely that the
retained deleted messages would depend on the phone and
individual user.

Figure 25. Voice mail audio files.

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL VOL. 4, NO.1, SEPTEMBER 2010, ISSN# 1941-6164 9

Figure 26. Playback and analysis of voice mail audio files.

 Voice mail audio files are not stored in a typical
database file, but can be found in the
/data/data/com.coremobility.app.vnotes/fil

es directory, using the file names VN-*.AMR (Figure 25).
Adaptive Multi-Rate (AMR) files use a standard audio format
that is commonly found in Global System for Mobile (GSM)
communications cell phones (Figure 26).

Figure 27. Telenav recent stops information.

 Telenav is the Sprint navigation application. Files
related to Telenav can be found in the
/data/data/com.telenav.app.android.sprint/

files directory. The most useful file appears to be

ANDROID_TN55_recent_stops.dat, which contains
recent location information (Figure 27). When viewed
logically, deleted history is not shown.

Figure 28. Gmail database file.

Figure 29. Complete e-mail.

 The
/data/data/com.google.android.providers.gm

ail/databases directory contains files related to Gmail,

and contains information that is available when accessing
Gmail via the application rather than via the browser. The
mailstore.j.lessard @gmail.com.db file is the

database for the user j.lessard@gmail.com, and includes e-mail
history information such as sender, receiver, date received,
subject, and a snippet of the message body (Figure 28). An

example of the complete body of an e-mail can be found in
Figure 29.

Figure 29. Call history database, Number and name fields
truncated for publication.

 Android phones also contain extensive call history and
contact information. The
/data/data/com.android.providers.contacts/

databases/contacts.db database contains the call
history, including the phone number, date, length of call in
seconds, type of call (1 = incoming, 2 = outgoing, 3 = missed),
and name from a phonebook look up, if available (Figure 29).

Figure 30. Contact history information.

 Other potentially useful information in
contacts.db includes contact names, number of times

contacted, the time of the most recent contact, contact photo
file (if used), custom ringtone (if used), and last time the
contact information was updated (Figure 30).

Figure 31. Facebook status updates.

 Finally, the HTC Hero also synchronizes contact's
Facebook status updates with the phone book. That information

is also stored in contacts.db (Figure 31).

Analysis With the CelleBrite

 For comparison purposes, a CelleBrite Universal
Forensic Extraction Device (UFED) was also employed to
acquire information from the phone. The UFED is a stand-
alone hardware device that is designed to pull contact lists and
address books, pictures, videos, music, ringtones, text
messages, call history, and device identifying information. The
UFED communicates with a cell phone via a data cable,
infrared (IR), or BlueTooth (BT). Subscriber Information
Module (SIM) data can be acquired directly from the card or

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL VOL. 4, NO.1, SEPTEMBER 2010, ISSN# 1941-6164 10

while in place in the phone. The UFED can acquire data
logically or physically, although physical acquisition is not
supported for the HTC Hero. The UFED acts as a write blocker
so no information is written to the phone when conducting an
examination (CelleBrite, 2010).
 In order to connect the HTC Hero to the UFED, USB
storage and USB debugging both need to be turned on. The
UFED walks an examiner through the steps needed to logically
acquire data; the examination output in this case was an HTML
file directed to a USB thumb drive.

Figure 32. Phone identifying information from the UFED.

Figure 33. Some of the SMS messages extracted by the UFED
[Phone numbers truncated for publication].

Figure 34. Some of the call history information extracted by the
UFED;

incoming calls (top), outgoing calls (middle), and missed calls
(bottom).

 The CelleBrite device starts its report with basic phone
identifying information, such as the acquired device type,
software level, mobile equipment identifier (MEID), and the
data and time of the data acquisition (Figure 32). In this
instance, the UFED recovered 1070 SMS messages (Figure 33),
56 contacts, 107 incoming calls, 192 outgoing calls, 49 missed
calls (Figure 34), 69 pictures, and one video. It was able to
report on each category 100% correctly, as confirmed by
examination of the phone itself.

Figure 35. Two of the picture files extracted by the UFED.

Figure 36. Video file extracted by the UFED.

 The 69 pictures that were extracted from the phone
came from shots taken by the phone's camera, screenshots of
bookmarked Websites, and those received and downloaded as
MMS messages. Two images are shown in Figure 35. Note that
the EXIF information suggests that this phone may have taken
the image at the top, while the picture at the bottom was not
taken by this phone. Note also the different picture file naming
format, further evidence that the files were created by different
cameras. The one video that was found was taken with the
camcorder feature in the Hero (Figure 36).

Summary of Results

 This experiment in acquiring information from an
Android device using multiple methods is far from conclusive,
although it provided some interesting insights:

• dd analysis with FTK
o Pros: Found deleted text messages and

contacts that would have likely not been
located utilizing another method, found
passwords with relative ease.

o Cons: Required root access, results extremely
fragmented, countless hours would have to be
spent to try to locate and piece everything
together (although another forensic suite may
have netted better handling of the file system
and FTK easily could in the future with an
update).

• Logical analysis of specific databases
o Pros: Recovered virtually everything that

could be helpful to a mobile forensic
investigation including call history, Web and
search history, pictures, MMS/SMS
messages, e-mail data with complete
messages, and even GPS data, voice mail and
passwords.

o Cons: Required root access, did not find all
deleted SMS messages, phone records, and
contact info.

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL VOL. 4, NO.1, SEPTEMBER 2010, ISSN# 1941-6164 11

• Data extraction with the CelleBrite UFED
o Pros: Recovered MMS/SMS messages, call

logs, photos, video, and contact information;
simple, stand-alone method.

o Cons: Logical extraction only (physical
acquisition not yet supported); did not
recover e-mails, browser, or search history.

 It appears that browsing the databases logically netted
the most information in an easily viewable way. Obtaining a dd
image is extremely valuable but, aside from the user
reconstructing where all the pieces fit, it was not the best
method in this case. A different tool or forensics software with
specific YAFFS2 support would make the physical analysis a
winner. As it stands now, however, FTK would be most
valuable when searching for very specific strings of text.

Conclusion

 Cell phones are becoming even more sophisticated and
able. Both law enforcement and the private sector need to
invest time and money into learning about new operating
systems and developing new forensic methods.
 While Android forensics is still in its infancy, steps are
being made to meet the new technology. CelleBrite (2010),
Paraben (2008), and .XRY (Micro Systemation, 2008) all
currently offer some type of Android solution and more tools
will be adding support as Android gains in popularity. Android
is not just for phones either; it can be used on computers,
kitchen appliances, and military applications (Spencer, 2009).
Expect to begin seeing it everywhere.
 The number of Android phones will be continuously
increasing as more manufactures adopt the budding OS. As it
stands now, Android sales, by some estimates, will overtake
iPhone sales within the next two to three years (Lomas, 2009).
While Android is powerful, complex, has multiple firmware
implementations and some with manufactures making custom
UIs, the standardization will make mobile forensics simpler in
the long run. Indeed, as the market for Android continues to
grow, learning how to forensically acquire information from
these devices becomes essential for mobile device examiners.

Author Information

Jeff Lessard received a B.S. degree in Computer & Digital
Forensics from Champlain College (Burlington, Vermont) in
December 2009. This paper is an expansion of his senior thesis
project. All screen shots, unless otherwise noted, were taken by
Jeff.

Gary C. Kessler, Ed.S., is president of Gary Kessler Associates,
adjunct associate professor at Edith Cowan University (Perth,
Western Australia), and mobile device examiner for the
Vermont Internet Crimes Against Children (ICAC) Task Force.
At the time of this project, he was an Associate Professor and
director of the M.S. in Digital Investigation Management

program at Champlain College. He is a Certified Computer
Examiner (CCE) and Certified Information Systems Security
Professional (CISSP), and is an associate editor at the Journal

of Digital Forensic Practice and Journal of Digital Forensics,

Security and Law.

References

AdMob. (2010, January). AdMob mobile metrics report. Retrieved
February 2, 2010, from http://metrics.admob.com/wp-
content/uploads/2010/01/AdMob-Mobile-Metrics-Dec-09.pdf

Android.com. (2009a, December 16). Android security and
permissions. Retrieved December 21, 2009, from
http://developer.android.com/guide/topics/security/security.html

Android.com. (2009b, December 16). What is android? Retrieved
December 21, 2009, from
http://developer.android.com/guide/basics/what-is-android.html

Android-DLs.com. (2009, December 7). Edit and re-pack boot images.
Android-DLs Web site. Retrieved December 21, 2009, from
http://android-dls.com/wiki/index.php
?title=HOWTO:_Unpack%2C_Edit%2C_and_Re-Pack_Boot_Images

Android Developers. (2009, December). Download the Android SDK.
Android Developers Web site. Retrieved December 21, 2009, from
http://developer.android.com/sdk/index.html

CelleBrite. (2010). UFED standard kit. CelleBrite Web site. Retrieved
August 15, 2010, from http://www.cellebrite.com/UFED-Standard-
Kit.html

DalvikVM.com. (2008). Dalvik virtual machine. Retrieved December
21, 2009, from http://www.dalvikvm.com/

Dedekind. (2009, January 12). Memory technology devices. Linux

Memory Technology Devices FAQ. Retrieved December 21, 2009,
from http://www.linux-mtd.infradead.org/faq /general.html

Hoog, A. (2009a, March 16). Input/output error trying to dd Android
/dev/block devices. viaForensics Web site. Retrieved December 21,
2009, from http://viaforensics.com/forum/android-
forensics/inputoutput-error-trying-to-dd-android-devblock-devices/

Hoog, A. (2009b, October 19). Android browser stores passwords and
other sensitive data in plain text. viaForensics Web site. Retrieved
December 21, 2009, from http://viaforensics.com/android-
forensics/android-browser-stores-passwords-sensitive-data-plain-
text.html

HTC. (2009). HTC Sense user interface [Video]. HTC Web site.
Retrieved December 21, 2009, from
http://www.htc.com/us/content/interactive/mediagallery/htc-sense.flv

Lomas, N. (2009, March 6). Android could overtake iPhone by 2012.
BusinessWeek Online. Retrieved December 21, 2009, from
http://www.businessweek.com/globalbiz/content/mar2009/gb2009036
_886305.htm

SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL VOL. 4, NO.1, SEPTEMBER 2010, ISSN# 1941-6164 12

Manning, C. (2002, September 20). YAFFS The NAND-specific flash
file system. Retrieved December 21, 2009, from
http://www.yaffs.net/yaffs-nand-specific-flash-file-system-
introductory-article

Micro Systemation. (2008, July 1). .XRY system. Micro Systemation

Web site. Retrieved December 21, 2009, from
http://www.msab.com/en/mobile-forensic-products/XRY-Mobile-
Version-Forensic-Software/

Miller, R. (2009, June 25). HTC's Sense UI not coming to any
"Google" branded phones. engadget Web site. Retrieved December 21,
2009, from http://www.engadget.com/2009 /06/25/htcs-sense-ui-not-
coming-to-any-google-branded-phones/

Open Handset Alliance (OHA). (2009). Open handset alliance home
page. Retrieved December 21, 2009, from
http://www.openhandsetalliance.com

Paraben Corp. (2008). Paraben's Device Seizure - Cell phone forensic
software. Paraben Forensic Tools Web site. Retrieved December 21,
2009, from http://www.paraben-forensics.com/cell_models.html

Purdy, K. (2009, August 21). Five great reasons to root your Android
phone. lifehacker Web site. Retrieved December 21, 2009, from
http://lifehacker.com/5342237/five-great-reasons-to-root-your-
android-phone

SSI Embedded Systems. (2008). Embedded Linux - Managing flash
memory. SSI Embedded Systems Programming Web site. Retrieved
December 21, 2009, from
http://www.ssiembedded.com/embedded_linux_managing_memory.ht
ml

Spencer, S. (2009, July 24). Android appliances on the horizon.
PocketGamer.biz Web site. Retrieved December 21, 2009, from
http://www.pocketgamer.biz/r/PG.Biz/Android /news.asp?c=14567

TalkForensics. (2009, September 27). Andrew Hoog of viaForensics

talks about Android forensics [Audio Podcast]. Retrieved December
21, 2009, from
http://www.blogtalkradio.com/show.aspx?userurl=TalkForensics&yea
r=2009&month=09&day=27&url=Andrew-Hoog-of-viaForensics-
talks-about-Android-forensics

The Unlockr.com. (2009, November 7). How to: Root your Sprint
HTC Hero. Retrieved December 21, 2009, from
http://theunlockr.com/2009/11/07/how-to-root-your-cdma-htc-hero-
sprint-verizon/

ZenThought. (2009). ASRoot2 software. ZenThought.org Web site.
Retrieved December 21, 2009, from http://zenthought.org/tmp/asroot2

